Paper | Title | Page |
---|---|---|
MOPMF073 | Rejuvenation of 7-Gev SuperKEKB Injector Linac | 300 |
|
||
KEK injector linac has delivered electrons and positrons for particle physics and photon science experiments for more than 30 years. It was upgraded for the SuperKEKB project, which aims at a 40-fold increase in luminosity over the previous project KEKB, in order to increase our understanding of flavor physics beyond the standard model of elementary particle physics. SuperKEKB energy-asymmetric electron-positron collider with its extremely high luminosity requires a high current, low emittance and low energy spread injection beam from the injector. The electron beam is generated by a new type of RF gun, that provides a much higher beam current to correspond to a large stored beam current and a short lifetime in the ring. The positron source is another major challenge that enhances the positron bunch intensity from 1 to 4 nC by increasing the positron capture efficiency, and the positron beam emittance is reduced from 2000 μm to 10 μm in the vertical plane by introducing a damping ring, followed by the bunch compressor and energy compressor. The summary of the rejuvenation is reported. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF073 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAK015 | Beam Gate Control System for SuperKEKB | 2124 |
|
||
The electron beam pulses of injector linac for the SuperKEKB collider are enabled and disabled by Beam Gate control system. This system controls the delivery of triggers to the electron guns at the injector. Also, the septum and kicker magnets for injection point of main ring are controlled with this Beam Gate to avoid unnecessary operation and to prolong their lifetime. The Beam Gate synchronizes the enabling and disabling operations of these hardware even though they are about 1km distant. Besides, from the phase-2 operation, the kicker and septum magnets for newly constructed damping ring becomes controlled apparatus of this system. We develop the new Beam Gate control system with the Event Timing System network*. The new system improves the unsatisfied performance of Beam Gate in the phase-1 operation and realizes the complicated control for phase-2. The advantages of new system are: the control signal is delivered via Event nettork, so that we do not need to cable new network. The enabling and disabling operations for distant hardware are surely synchronized by the Event Timing System.
* H. Kaji et al., "Construction and Commissioning Event Timing System at SuperKEKB", Proceedings of IPAC14, Dresden, Germany (2014). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK015 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |