Paper | Title | Page |
---|---|---|
WEPAK005 | A Cryogenic Current Comparators (CCC) Customized for FAIR-Project | 2088 |
SUSPF098 | use link to see paper's listing under its alternate paper code | |
|
||
The principle of non-destructive measurement of ion beams by detection of the azimuthal magnetic field, using low temperature Superconducting Quantum Interference Device (SQUID) sensors, has been established at GSI already in the mid 90's. After more recent developments at Jena, GSI and CERN, a CCC was installed in the CERN Antiproton Decelerator (AD) and is operated there routinely as the first stand-alone CCC system. For the Facility for Antiproton and Ion Research (FAIR) a new version of the CCC with eXtended Dimensions (CCC-XD) - especially with a larger inner diameter and adapted parameters - was constructed and first lab tests have already been performed. In parallel, a concept for a dedicated UHV beamline cryostat has been worked out. The CCC-XD system - together with the new cryostat - will be ready for testing in the CRYRING at GSI before the end of 2018. In this contribution, experimental results for the resolution, frequency range, slew rate and pulse-signal obtained by electrical laboratory measurements with the CCC-XD are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK005 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAF077 | Ion-optical Measurements at CRYRING@ESR during Commissioning | 3161 |
|
||
CRYRING@ESR is a heavy ion storage ring, which can cool and decelerate highly charged ions down to a few 100 keV/u. It has been relocated from Sweden to GSI, downstream of the experimental storage ring (ESR), within the FAIR project. The ring will be used as a test facility for FAIR technologies as well as for physics experiments with slow exotic ion beams for several FAIR collaborations: SPARC, BioMat, FLAIR and NUSTAR. CRYRING@ESR is in its commissioning phase since summer 2016. Several ion-optical measurements such as tunes, tune diagram, dispersion, chromaticity and orbit response matrix were performed at the ring. The measurements will be used for several purposes such as improvement of the theoretical model, closed orbit control and correction of unacceptable misalignments, calibration coefficients and field errors. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF077 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPML044 | Operation of a Cryogenic Current Comparator with Nanoampere Resolution for Continuous Beam Intensity Measurements in the Antiproton Decelerator at CERN | 4741 |
|
||
Funding: This project has received funding from the European Union's Seventh Framework Programme, under grant agreement number 289485. Low-intensity charged particle beams are particularly challenging for non-perturbative beam diagnostics due to the small amplitude of induced electromagnetic fields. The Antiproton Decelerator (AD) and Extra Low ENergy Antiproton (ELENA) rings at CERN decelerate beams containing 107 antiprotons. An absolute intensity measurement of the circulating beam is essential to monitor the operational efficiency and to provide important calibration data for the antimatter experiments. This paper reviews the design of an operational Cryogenic Current Comparator (CCC) based on Superconducting QUantum Interference Device (SQUID) for current and intensity monitoring in the AD. Such a system has been operational throughout 2017, relying on a stand-alone cryogenic infrastructure based on a pulse-tube cryocooler. System performance is presented and correlated with different working environments, confirming a resolution in the nanoampere range. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML044 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEYGBD3 | The CERN Gamma Factory Initiative: An Ultra-High Intensity Gamma Source | 1780 |
|
||
This contribution discusses the possibility of broadening the present CERN research programme making use of a novel concept of light source. The proposed, Partially Stripped Ion beam driven, light source is the backbone of the Gamma Factory (GF) initiative. It could be realized at CERN by using the infrastructure of the already existing accelerators. It could push the intensity limits of the presently operating light-sources by up to 7 orders of magnitude, reaching fluxes of 1017 photons/s in the interesting gamma-ray energy domain between 1 MeV and 400 MeV. The GF light-source cannot be replaced, in this energy domain, by a FEL source as long as the multi TeV electron beams are not available. Its intensity is beyond the reach of the Inverse Compton Scattering sources. The unprecedented-intensity, energy-tuned gamma beams, together with the gamma-beams-driven secondary beams of polarized leptons, neutrinos, neutrons and radioactive ions are the basic research tools of the proposed Gamma Factory. A broad spectrum of new opportunities, in a vast domain of uncharted fundamental and applied physics territories, could be opened by the Gamma Factory research programme. | ||
![]() |
Slides WEYGBD3 [7.531 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEYGBD3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF015 | Lifetime and Beam Losses Studies of Partially Strip Ions in the SPS (129Xe39+) | 4070 |
|
||
The CERN multipurpose Gamma Factory proposal relies on using Partially Stripped Ion (PSI) beams, instead of electron beams, as the drivers of its light source. If such beams could be successfully stored in the LHC ring, fluxes of the order of 1017 photons/s, in the gamma-ray energy domain between 1 MeV and 400 MeV could be achieved. This energy domain is out of reach for the FEL-based light sources as long as the multi TeV electron beams are not available. The CERN Gamma Factory proposal has the potential of increasing by 7 orders of magnitude the intensity limits of the present Inverse Compton Scattering sources. In 2017 the CERN accelerator complex demonstrated its flexibility by producing a new, xenon, ion beam. The Gamma Factory study group, based on this achievement, requested special studies. Its aim was to inject and to accelerate, in the SPS, partially stripped xenon ions Xe39+ measure their life time, and determine the relative strength of the processes responsible for the PSI beam losses. This study, the results of which are presented in this contribution, was an initial step in view of the the future studies programmed for 2018 with lead PSI beams. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF015 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |