Author: Soykarci, S.
Paper Title Page
WEPMF009 Influence of Argon-Ion Irradiation on Field Emission from Polycrystalline Cu and Large-Grain NB Surfaces 2384
 
  • S. Soykarci
    University of Wuppertal, Wuppertal, Germany
  • D. Lützenkirchen-Hecht, V. Porshyn, P. Serbun
    Bergische Universität Wuppertal, Wuppertal, Germany
 
  Funding: This work is funded by the BMBF project 05H15PXRB1.
In the present work, systematic investigations of the enhanced field emission (EFE) from polycrystalline copper and large grain niobium surfaces before and after argon-ion irradiation with an energy of 5 keV were performed with a variation of the irradiation time. Results show that the suppression of the EFE might be achievable.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF010 Laser Treatment of Niobium Surface for SRF Aplications 2387
 
  • V. Porshyn, D. Lützenkirchen-Hecht, P. Serbun
    Bergische Universität Wuppertal, Wuppertal, Germany
  • H. Bürger, S. Soykarci
    University of Wuppertal, Wuppertal, Germany
 
  Funding: The research was funded by the German Federal Ministry of Education and Research (BMBF) under project number 05H15PXRB1.
We report on a laser surface treatment of high purity niobium (110) single crystals. Typical surface defects like scratches, pits, sharp rims and holes were eliminated by a focused pulsed ns-laser beam. A laser fluence of about 0.68 J/cm2 and 40 - 80 pulses per spot were required to induce well detectable surface modifications. The remelted surface was sufficiently smooth, but exhibited also a number of wave structures. Thus, the surface roughness slightly increased with increasing number of pulses. Finally, boiling traces and μm-deep ablation were observed and studied as well. Local field electron emission measurements showed no emission up to 700 MV/m from a moderate remelted area below the boiling point.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)