Author: Seibel, A.
Paper Title Page
TUPAF079 Scaled Alvarez-Cavity Model Investigations for the UNILAC Upgrade 916
 
  • M. Heilmann, X. Du, L. Groening, M. Kaiser, S. Mickat, M. Vossberg
    GSI, Darmstadt, Germany
  • A. Seibel
    IAP, Frankfurt am Main, Germany
 
  The 1:3 scaled aluminum model of an Alvarez-type cavity with 10 gaps was used for comparison of simulation with measurement for the frequency and the electric field on axis. The scaled frequency is 325.224 MHz and an Alvarez cavity has a small frequency tuning range. With this scaled model it was possible to apply different stem configurations for each drift tube to damp parasitic modes and to increase the field stability. The new drift tubes have an optimized free-formed profile on the end plates in order to increase the shunt impedance. In special the assembly, positioning and alignment of the drift tubes can be tested and the frequency change can be investigated in this respect.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF080 Final Design of the FoS Alvarez-Cavity-Section for the Upgraded UNILAC 920
 
  • M. Heilmann, X. Du, L. Groening, M. Kaiser, S. Mickat, C. Mühle, A. Rubin, V. Srinivasan
    GSI, Darmstadt, Germany
  • A. Seibel
    IAP, Frankfurt am Main, Germany
 
  The final design describes the First-of-Series (FoS) Alvarez-Cavity-section of the first tank being part of the new post-stripper DTL of the UNILAC. The FoS-cavity has an input energy of 1.358 MeV/u with 11 drift tubes (including quadrupole singlets) in a total length of 1.9 m and a diameter of 2 m with an operation frequency of 108.4 MHz. The drift tubes will have a new shape profile at the end plates. The single layered quadruple singlets inside the drift tubes are pulsed with 10 Hz and will have a maximum field gradient of 51 T/m. The new drift tube design combines the new shape profile with the transverse and longitudinal installation space of the magnet. The FoS Alvarez-cavity will be part of the first section of the new Alvarez DTL. It shall be operated at nominal RF- and magnetic fields prior to procurement of the series.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)