Author: Schwickert, M.
Paper Title Page
WEPAK004 Beam Instrumentation for CRYRING@ESR 2084
 
  • A. Reiter, C. Andre, H. Bräuning, C. Dorn, P. Forck, R. Haseitl, T. Hoffmann, W. Kaufmann, N. Kotovski, P. Kowina, K. Lang, R. Lonsing, P.B. Miedzik, T. Milosic, A. Petit, H. Reeg, C. Schmidt, M. Schwickert, T. Sieber, R. Singh, G. Vorobjev, B. Walasek-Höhne, M. Witthaus
    GSI, Darmstadt, Germany
 
  We present the beam instrumentation of CRYRING@ESR, a low-energy experiment facility at the GSI Helmholtz-Centre for heavy ion research. The 1.44 Tm synchrotron and storage ring, formerly hosted at the Manne Siegbahn laboratory in Stockholm, Sweden, was modified in its configuration and installed behind the existing ESR, the experimental storage ring. As the first machine within the ongoing FAIR project, the facility for antiproton and ion research, it is built on the future timing system and frameworks for data supply and acquisition. Throughout the past year CRYRING was commissioned including its electron cooler with hydrogen beams from the local linear accelerator. Storage, acceleration and cooling have been demonstrated. The contribution provides an overview of the beam instrumentation. The design of the detector systems and their current performance are presented. Emphasis is given to beam position monitors, detectors for intensity measurements, and the ionization profile monitors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK005 A Cryogenic Current Comparators (CCC) Customized for FAIR-Project 2088
SUSPF098   use link to see paper's listing under its alternate paper code  
 
  • J. Golm, R. Neubert, F. Schmidl, P. Seidel
    FSU Jena, Jena, Germany
  • J. Golm, T. Stöhlker, V. Tympel
    HIJ, Jena, Germany
  • D.M. Haider, F. Kurian, M. Schwickert, T. Sieber, T. Stöhlker
    GSI, Darmstadt, Germany
  • R. Neubert
    Thuringia Observatory Tautenburg, Tautenburg, Germany
  • M. Schmelz, R. Stolz
    IPHT, Jena, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • V. Zakosarenko
    Supracon AG, Jena, Germany
 
  The principle of non-destructive measurement of ion beams by detection of the azimuthal magnetic field, using low temperature Superconducting Quantum Interference Device (SQUID) sensors, has been established at GSI already in the mid 90's. After more recent developments at Jena, GSI and CERN, a CCC was installed in the CERN Antiproton Decelerator (AD) and is operated there routinely as the first stand-alone CCC system. For the Facility for Antiproton and Ion Research (FAIR) a new version of the CCC with eXtended Dimensions (CCC-XD) - especially with a larger inner diameter and adapted parameters - was constructed and first lab tests have already been performed. In parallel, a concept for a dedicated UHV beamline cryostat has been worked out. The CCC-XD system - together with the new cryostat - will be ready for testing in the CRYRING at GSI before the end of 2018. In this contribution, experimental results for the resolution, frequency range, slew rate and pulse-signal obtained by electrical laboratory measurements with the CCC-XD are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYGBF3 Challenges of FAIR Phase 0 2947
 
  • M. Bai, A. Adonin, S. Appel, R. Bär, M.C. Bellachioma, U. Blell, C. Dimopoulou, G. Franchetti, O. Geithner, P. Gerhard, L. Groening, F. Herfurth, R. Hess, R. Hollinger, H.C. Hüther, H. Klingbeil, A. Krämer, S.A. Litvinov, F. Maimone, D. Ondreka, N. Pyka, S. Reimann, A. Reiter, M. Sapinski, B. Schlitt, G. Schreiber, M. Schwickert, D. Severin, R. Singh, P.J. Spiller, J. Stadlmann, M. Steck, R.J. Steinhagen, K. Tinschert, M. Vossberg, G. Walter, U. Weinrich
    GSI, Darmstadt, Germany
 
  After two-year's shutdown, the GSI accelerators plus the latest addition of storage ring CRYRING, will be back into operation in 2018 as the FAIR phase 0 with the goal to fulfill the needs of scientific community and the FAIR accelerators and detector development. Even though GSI has been well known for its operation of a variety of ion beams ranging from proton up to uranium for multi research areas such as nuclear physics, astrophysics, biophysics, material science, the upcoming beam time faces a number of challenges in re-commissioning its existing circular accelerators with brand new control system and upgrade of beam instrumentations, as well as in rising failures of dated components and systems. The cycling synchrotron SIS18 has been undergoing a set of upgrade measures for fulfilling future FAIR operation, among which many measures will also be commissioned during the upcoming beam time. This paper presents the highlights of the challenges such as re-establishing the high intensity heavy ion operation as well as parallel operation mode for serving multi users. The status of preparation including commissioning results will also be reported.  
slides icon Slides THYGBF3 [2.948 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THYGBF3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML044 Operation of a Cryogenic Current Comparator with Nanoampere Resolution for Continuous Beam Intensity Measurements in the Antiproton Decelerator at CERN 4741
 
  • M.F. Fernandes, D. Alves, T. Koettig, A. Lees, J. Tan
    CERN, Geneva, Switzerland
  • M.F. Fernandes, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • M. Schwickert, T. Stöhlker
    GSI, Darmstadt, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This project has received funding from the European Union's Seventh Framework Programme, under grant agreement number 289485.
Low-intensity charged particle beams are particularly challenging for non-perturbative beam diagnostics due to the small amplitude of induced electromagnetic fields. The Antiproton Decelerator (AD) and Extra Low ENergy Antiproton (ELENA) rings at CERN decelerate beams containing 107 antiprotons. An absolute intensity measurement of the circulating beam is essential to monitor the operational efficiency and to provide important calibration data for the antimatter experiments. This paper reviews the design of an operational Cryogenic Current Comparator (CCC) based on Superconducting QUantum Interference Device (SQUID) for current and intensity monitoring in the AD. Such a system has been operational throughout 2017, relying on a stand-alone cryogenic infrastructure based on a pulse-tube cryocooler. System performance is presented and correlated with different working environments, confirming a resolution in the nanoampere range.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)