Paper | Title | Page |
---|---|---|
TUPAF090 | Measurements of the MYRRHA-RFQ at the IAP Frankfurt | 949 |
|
||
Funding: Work supported by the EU Framework Programme H2020 662186 (MYRTE) The MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) Project is a planned accelerator driven system (ADS) which aims to demonstrate the feasibility of large scale transmutation. The first RF structure of the 600 MeV MYRRHA Linac will be a 176.1 MHz 4-Rod RFQ that will accelerate up to 4 mA protons in cw operation from 30 keV up to 1.5 MeV. The voltage along the approximately 4 m long electrodes has been chosen to 44 kV which limits the RF losses to about 25 kW/m. During the design of the structure a new method of dipole compensation has been applied. This paper describes the status of the RFQ and shows the results of the measurements done at IAP Frankfurt such as dipole and flatness measurement, vacuum tests and power tests up to 11 kW. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF090 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPML043 | RF Simulations of the Injector Section from CH8 to CH15 for MYRRHA | 2790 |
|
||
Funding: Work supported by the EU Framework Programme H2020 662186 (MYRTE) and HIC for FAIR MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the first prototype of an accelerator driven nuclear reactor dealing with the transmutation of long-living nuclear waste. Beam quality and reliability are crucial for the reactor. The injector design is done by IAP, Goethe-University, and has been adapted to the final magnet design and voltage distributions. The energy section from 5.87 MeV up to 16.6 MeV has been changed to normal conducting CH cavities as in the lower energy part of the injector. For beam adjustment a 5-gap CH cavity rebuncher at 5.87 MeV as well as two doublet magnets forming the new MEBT-2 section between CH7 and CH8 have been added. Starting parameters for the RF simulations have been given by beam dynamics results calculated with LORASR. RF simulations of these structures consisting of flatness and tuning optimizations will be presented within this contribution. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML043 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPML044 | Design of HOM Couplers for Superconducting 400 MHz RF Cavities | 2793 |
|
||
The Future Circular Collider (FCC) is one possible future successor of the Large Hadron Collider (LHC). The proton-proton collider center-of-mass collision energy is set to 100 TeV with a beam current of 0.5 A. To reach this goal a stable acceleration is critical and therefore higher order modes (HOM) need to be damped. To avoid a high power level in the HOM dampers, further described as couplers, the loaded Q-factor should be below 1000 for the cavity with mounted HOM couplers. Besides a low Q-factor the R/Q value should also be in the range of 1 Ω or below. Two different types of couplers are used to achieve a high damping. The two types are a narrowband Hook-type HOM coupler and a broadband Probe-type HOM coupler. The recent results of the design of the HOM couplers attached to a superconducting 400 MHz RF cavity will be presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML044 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |