Author: Murcek, P.
Paper Title Page
TUPMF002 A Cu Photocathode for the Superconducting RF Photoinjector of BERLinPro 1247
 
  • J. Kühn, M. Bürger, A. Frahm, A. Jankowiak, T. Kamps, G. Klemz, G. Kourkafas, A. Neumann, N. Ohm, M. Schmeißer, M. Schuster, J. Völker
    HZB, Berlin, Germany
  • P. Murcek, J. Teichert
    HZDR, Dresden, Germany
 
  The initial commissioning of the Superconducting RF (SRF) photoinjector is done with a Cu photocathode due to its robustness with regard to interactions with the SRF cavity of the injector. Here we present the preparation and characterization of a Cu photocathode plug and the diagnostics to insert the photocathode in the back wall of the SRF cavity. A polycrystalline bulk Cu plug was polished, particle free cleaned and characterized by x-ray photoelectron spectroscopy. During the transfer of the photocathode insert into the gun module the whole process was controlled by several diagnostic tools monitoring the insert position as well as RF, vacuum and cryogenic signals. We discuss the challenges of the photocathode transfer into an SRF cavity and how they can be tackled.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF039 Study of Magnesium Photocathodes for Superconducting RF Photoinjectors 4142
 
  • R. Xiang, A. Arnold, P.N. Lu, P. Murcek, J. Teichert, H. Vennekate
    HZDR, Dresden, Germany
 
  Funding: The work is supported by the German Federal Ministry of Education and Research (BMBF) grant 05K12CR1.
The superconducting RF photoinjector (SRF Gun II) has successfully served for the ELBE user facility at HZDR. Nevertheless, the quality of photocathodes is one of the most critical issues in improving the stability and reliability for its application. Magnesium has a comparably low work function (3.6 eV) and shows a quantum efficiency up to 0.3% after laser cleaning. However, the present cleaning process with a high intensity laser beam is time consuming and produces unwanted surface roughness, which leads to a higher thermal emittance. Thermal treatment and Excimer laser cleaning for Mg cathodes are investigated as alternative methods. In this work, the new cleaning procedures are tested and optimized, and the quantum efficiency of Mg samples with different microstructure, composition and suppliers are compared.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF040 Experiences with the SRF Gun II for User Operation at the ELBE Radiation Source 4145
 
  • J. Teichert, A. Arnold, M. Bawatna, P.E. Evtushenko, M. Gensch, B.W. Green, S. Kovalev, U. Lehnert, P.N. Lu, P. Michel, P. Murcek, H. Vennekate, R. Xiang
    HZDR, Dresden, Germany
 
  Funding: The work is supported by the German Federal Ministry of Education and Research (BMBF) grant 05K12CR1.
The second version of the superconducting RF pho-toinjector (SRF Gun II) was successfully commissioned at the ELBE radiation source in 2014. The gun features an improved 3.5-cell niobium cavity combined with a super-conducting solenoid integrated in the cryostat. With a Mg photocathode the SRF Gun II is able to generate bunches with up to 200 pC and with sub-ps length in CW mode with 100 kHz pulse frequency for the THz radiation fa-cility at ELBE. In the ELBE linac, the beam is accelerat-ed, gets a proper correlated energy spread, and is com-pressed in a magnetic chicane. Sub-ps pulses are obtained producing coherent diffraction radiation and superradiant undulator radiation.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)