Paper |
Title |
Page |
MOPMF038 |
Cleaning Performance of the Collimation System with Xe Beams at the Large Hadron Collider |
176 |
|
- N. Fuster-Martínez, R. Bruce, P.D. Hermes, J.M. Jowett, D. Mirarchi, S. Redaelli
CERN, Geneva, Switzerland
|
|
|
The LHC heavy-ion program with Pb ions has delivered substantial physics results since the startup of the LHC. There was a Xe run in 2017 in which collimation losses and cleaning were assessed. These studies give a unique opportunity for very valuable benchmark of simulation models with measurements, which could also be very important to understand limitations for future runs with Pb and other species. In this paper, we present collimation loss maps measured in the first ever operation of the LHC with Xe ions. The measurements are compared with simulations and first conclusions are discussed for possible future operation.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF038
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPMF039 |
First Xenon-Xenon Collisions in the LHC |
180 |
|
- M. Schaumann, R. Alemany-Fernández, P. Baudrenghien, T. Bohl, C. Bracco, R. Bruce, N. Fuster-Martínez, M.A. Jebramcik, J.M. Jowett, T. Mertens, D. Mirarchi, S. Redaelli, B. Salvachua, M. Solfaroli, H. Timko, J. Wenninger
CERN, Geneva, Switzerland
|
|
|
In 2017, the CERN accelerator complex once again demonstrated its flexibility by producing beams of a new ion species, xenon, that were successfully injected into LHC. On 12 October, collisions of fully stripped xenon nuclei were recorded for the first time in the LHC at a centre-of-mass energy per colliding nucleon pair of 5.44 TeV. Physics data taking started 9.5 h after the first injection of xenon beams and lasted a total of 6 h. The integrated luminosity delivered to the four LHC experiments was sufficient that new physics results can be expected soon. We provide a general overview of this Xe-Xe pilot run before focussing on beam data at injection energy and at flat-top.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF039
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPMF053 |
Observations, Analysis and Mitigation of Recurrent LHC Beam Dumps Caused by Fast Losses in Arc Half-Cell 16L2 |
228 |
|
- J.M. Jimenez, D. Amorim, S. A. Antipov, G. Arduini, A. Bertarelli, N. Biancacci, B. Bradu, E. Bravin, G. Bregliozzi, K. Brodzinski, R. Bruce, X. Buffat, L.R. Carver, P. Chiggiato, S.D. Claudet, P. Collier, R. Garcia Alia, M. Giovannozzi, L. K. Grob, E.B. Holzer, W. Höfle, G. Iadarola, G. Kotzian, A. Lechner, T.E. Levens, B. Lindstrom, T. Medvedeva, A. Milanese, D. Mirarchi, E. Métral, D. Perini, S. Redaelli, G. Rumolo, B. Salvant, R. Schmidt, M. Valette, D. Valuch, J. Wenninger, D. Wollmann, C. Yin Vallgren, C. Zamantzas, M. Zerlauth
CERN, Geneva, Switzerland
- D. Amorim
Université Grenoble Alpes, Grenoble, France
- A.A. Gorzawski
University of Manchester, Manchester, United Kingdom
- L. Mether
EPFL, Lausanne, Switzerland
|
|
|
Recurrent beam dumps significantly perturbed the operation of the CERN LHC in the summer months of 2017, especially in August. These unexpected beam dumps were triggered by fast beam losses that built up in the cryogenic beam vacuum at the half-cell 16 left of LHC-IP2 and were detected either at that location but mainly in the collimation insertions. This contribution details the experimental observables (beam losses, coherent instabilities, heat load to cryogenic system, vacuum signals), the extent of the understanding of the beam loss and instability mechanisms and the mitigation steps and new settings that allowed recovering the luminosity performance of the LHC for the rest of the Run.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF053
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF040 |
Beam Loss Measurements for Recurring Fast Loss Events During 2017 LHC Operation Possibly Caused by Macroparticles |
780 |
|
- A. Lechner, B. Auchmann, E. Bravin, A.A. Gorzawski, L. K. Grob, E.B. Holzer, B. Lindstrom, T. Medvedeva, D. Mirarchi, R. Schmidt, M. Valette, D. Wollmann
CERN, Geneva, Switzerland
|
|
|
The availability of the LHC machine was adversely affected in 2017 by tens of beam aborts provoked by frequent loss events in one standard arc cell (16L2). In most of the cases, the dumps were triggered by concurrently developing fast beam instabilities leading to particle losses in the betatron cleaning insertion. Many of the events started with a distinct sub-millisecond loss peak comparable to regular dust particle events, which have been observed along all the LHC since the start-up. In contrast to regular dust events, persistent losses developed in cell 16L2 after the initial peaks which can possibly be explained by a phase transition of macroparticles to the gas phase. In this paper, we summarize the observed loss characteristics such as spatial loss pattern and time profiles measured by Beam Loss Monitors (ionization chambers). Based on the measurements, we estimate the energy deposition in macroparticles and reconstruct proton loss rates as well as the gas densities after the phase transition. Differences between regular dust events and events in 16L2 are highlighted and the ability to induce magnet quenches is discussed.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF040
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
TUPAF046 |
Conceptual Design of a Collimation System for the CERN Super Proton Synchrotron |
802 |
|
- M. Patecki, A. Mereghetti, D. Mirarchi, S. Redaelli
CERN, Geneva, Switzerland
|
|
|
The Super Proton Synchrotron (SPS) is the last accelerator in the LHC Injectors Chain. Its performance is constantly being improved in frame of the LHC Injectors Upgrade (LIU) Project in order to prepare it for the future HL-LHC (High Luminosity LHC) operation. One of the LIU goals is to nearly double the intensity extracted from the SPS, up to 2.32×1011 p/bunch. In recent years, nearly 10% of losses are observed for nominal intensity and LHC-type beams; they grow to about 20% for the intensity approaching the HL-LHC target. Beam losses imply activation and aging of the SPS hardware; the possibility to add a collimation system is being considered to mitigate this problem. In this paper we present studies of a collimation system design for the SPS. The concept is based on a primary horizontal collimator located in an available position with high enough dispersion, and a secondary collimator to intercept the particles leaking out from the primary collimator. Performance of the proposed collimation system is evaluated by means of numerical simulations.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF046
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
WEYGBE4 |
Low-Impedance Collimators for HL-LHC |
1794 |
|
- S. A. Antipov, N. Biancacci, R. Bruce, A. Mereghetti, D. Mirarchi, E. Métral, S. Redaelli, B. Salvant
CERN, Geneva, Switzerland
- D. Amorim
Université Grenoble Alpes, Grenoble, France
|
|
|
The High-Luminosity upgrade of the Large Hadron Collider (HL-LHC) will double its beam intensity for the needs of High Energy Physics frontier. This increase requires a reduction of the machine's impedance to ensure the coherent stability of the beams until they are put in collision. A major part of the impedance is the resistive wall contribution of the collimators. To reduce this contribution several coating options have been proposed. We have studied numerically the effect of the novel coatings on the beam stability. The results show that a decrease of up to 30% of the machine impedance and a reduction of up to 120 A in the stabilizing octupole current threshold can be achieved by coating the secondary collimators with Molybdenum. Half of that improvement can be obtained by coating the jaws of a subset of four collimators identified as the highest contributors to machine impedance. The installation of this subset of low-impedance collimators is planned for the Long Shutdown 2 in 2019-2020.
|
|
|
Slides WEYGBE4 [5.719 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-WEYGBE4
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPAF058 |
Experimental Characterisation of a Fast Instability Linked to Losses in the 16L2 Cryogenic Half-Cell in the CERN LHC |
3103 |
|
- B. Salvant, S. A. Antipov, G. Arduini, N. Biancacci, X. Buffat, L.R. Carver, P. Collier, A.A. Gorzawski, W. Höfle, G. Iadarola, G. Kotzian, A. Lechner, T.E. Levens, D. Mirarchi, E. Métral, G. Rumolo, D. Valuch
CERN, Geneva, Switzerland
- L. Mether
EPFL, Lausanne, Switzerland
|
|
|
The operation during the summer months of the 2017 Run of the CERN LHC was plagued with fast beam losses that repeatedly occurred in the 16th arc half-cell at the left of IP2 as well as in the collimation insertion, leading to unwanted beam dumps. Transverse coherent oscillations were observed during this fast process. We detail here the experimental observations of coherent motion that al-lowed shedding light upon parts of the mechanism and identify the potential mitigations that were successfully implemented in the second half of the Run.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF058
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|