Paper | Title | Page |
---|---|---|
WEXGBD3 |
Towards Attosecond Science at LCLS and LCLS-II | |
|
||
Time-resolved experiments at the attosecond scale hold great promise for understanding ultrafast electron dynamics in molecules, as well as the role of electron coherence in chemistry. In the recent past, much progress has been made in using X-ray free-electron lasers (X-FELs) to visualize atomic motion at the tens of femtosecond scale. At the same time, table-top lasers have been operated at the attosecond scale and successfully employed in scientific experiments. However, the femtosecond barrier has not yet been broken at X-ray free-electron lasers, hindering our ability to understand the fundamental motion of electrons. This invited talk describes the XLEAP project, aimed at generating attosecond pulses in the soft-X-ray region at LCLS, including the physics of laser-enhanced FELs and the effect of bandwidth broadening in this FEL mode. This talk will also present early XLEAP commissioning results and the immediate experimental plans, and describe plans for the transition from FEL R&D to science and discuss the roadmap to attosecond science with LCLS-II. | ||
![]() |
Slides WEXGBD3 [15.820 MB] | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMK046 | Advanced Fresh-Slice Beam Manipulations for FEL X-Ray Applications | 4387 |
|
||
The recent development of the Fresh-slice technique granted control on which temporal slice lases in each undulator section in an X-ray Free-electron laser. Fresh-slice has been used for several experiments at the Linac Coherent Light Source for the generation of customizable high power two-color beams, and increased the performance of self-seeding schemes. As a novel development of the technique we present the demonstration of multistage self-amplified spontaneous-emission amplification schemes for the production of high-power ultra short pulses and improved control of the temporal duration of each pulse in multi-pulse schemes. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK046 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMK083 | Self-Modulation of a Relativistic Electron Beam in a Wiggler | 4492 |
|
||
Users at x-ray free-electron laser (FEL) facilities have shown strong interest in using single spike, coherent x-ray pulses to probe attosceond dynamics in atoms and molecules. Sub-femtosecond soft x-ray pulses may be obtained from an electron beam that has been modulated in a wiggler resonant with an external laser, the enhanced-SASE technique. We discuss a new way to produce this energy modulation, wherein the external laser is replaced by coherent radiation from the current spike on the tail of the electron beam. We calculate the modulation expected in a wiggler from both a single frequency perspective and a coherent synchrotron radiation (CSR) perspective. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK083 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |