Paper | Title | Page |
---|---|---|
MOPML017 | Status and Development of the MYRRHA Injector | 432 |
|
||
The MYRRHA project aims at coupling a cw 600 MeV, 4 mA proton linac with a sub-critical reactor as the very first prototype nuclear reactor to be driven by a particle accelerator (ADS). Among several applications, MYRRHA main objective is to demonstrate the principle of partitioning and transmutation (P&T) as a viable solution to drastically reduce the radiotoxicity of long-life nuclear waste. For this purpose, the linac needs an unprecedented level of reliability in terms of allowable beam trips. The normal conducting injector delivers 16.6 MeV protons to the superconducting main linac. The first section of the injector (up to 5.9 MeV) consists of an ECR source, a 4-Rod-RFQ and a rebunching line followed by 7 individual CH-type cavities. This entire section will be set up and operated by SCK·CEN in Louvain-la-Neuve, Belgium, for ample performance and reliability testing. The first CH cavity has been sent for power tests to IAP Frankfurt, Germany. The most recent status of all cavities, couplers and the beam diagnostics of the MYRRHA injector is presented in this paper. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML017 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAF003 | Integrated Prototyping in View of the 100 MeV Linac for Myrrha Phase 1 | 661 |
|
||
Funding: Work partially supported by the European Commission H2020 programme MYRTE #662186 The MYRRHA project borne by SCK•CEN, the Belgian Nuclear Research Centre, aims at realizing a pre-industrial Accelerator Driven System (ADS) for exploring the transmutation of long lived nuclear waste. The linac for this ADS will be a High Power Proton Accelerator delivering 2.4 MW CW beam at 600 MeV. It has to satisfy stringent requirements for reliability and availability: a beam-MTBF of 250h is targeted. The reliability goal is pursued through a phased approach. During Phase 1, expected till 2024, the MYRRHA linac up to 100 MeV will be constructed. It will allow to evaluate the reliability potential of the 600 MeV linac. It will also feed a Proton Target Facility in which radioisotopes of interest will be collected through an ISOL system. This contribution will focus on the transition to integrated prototyping, which will emphasize (i) a test platform consisting of the initial section of the normal conducting injector (5.9 MeV), (ii) the realization of a complete cryomodule for the superconducting linac and of its cryogenic valve box. The cryomodule will house two 352 MHz single spoke cavities operated at 2K. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF003 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPML043 | RF Simulations of the Injector Section from CH8 to CH15 for MYRRHA | 2790 |
|
||
Funding: Work supported by the EU Framework Programme H2020 662186 (MYRTE) and HIC for FAIR MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the first prototype of an accelerator driven nuclear reactor dealing with the transmutation of long-living nuclear waste. Beam quality and reliability are crucial for the reactor. The injector design is done by IAP, Goethe-University, and has been adapted to the final magnet design and voltage distributions. The energy section from 5.87 MeV up to 16.6 MeV has been changed to normal conducting CH cavities as in the lower energy part of the injector. For beam adjustment a 5-gap CH cavity rebuncher at 5.87 MeV as well as two doublet magnets forming the new MEBT-2 section between CH7 and CH8 have been added. Starting parameters for the RF simulations have been given by beam dynamics results calculated with LORASR. RF simulations of these structures consisting of flatness and tuning optimizations will be presented within this contribution. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML043 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |