Paper | Title | Page |
---|---|---|
TUPMK004 | Using Decoherence to Prevent Damage to the Swap-Out Dump for the APS Upgrade | 1494 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The Advanced Photon Source (APS) is pursuing an upgrade of the storage ring to a hybrid seven-bend-achromat* design, which will operate in swap-out mode. The ultra-low emittance (about 30 pm in both planes) combined with the desire to provide high charge (15 nC) in individual bunches, entails very high energy density in the beam. Simple estimates, confirmed by simulation, indicate that interaction of such a bunch with the dump material will result in localized melting. Over time, it is possible that the beam would drill through the dump and vent the ring vacuum. This would seem to prevent extraction and dumping of bunches as part of swap out, and also suggests that transferring of bunches out of the ring carries significant risk. We devised an idea for using a pre-kicker to cause decoherence of the target bunch emittances, making it safe to extract. Simulations show that the concept works very well. *L. Farvacque et al., IPAC13, 79 (2013). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMK004 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THXGBD1 | The Upgrade of the Advanced Photon Source | 2872 |
|
||
After decades of successful operation as a 7-GeV synchrotron radiation source, the Advanced Photon Source is pursing a major upgrade that involves replacement of the storage ring with an ultra-low emittance multi-bend achromat design. Using a seven-bend hybrid multi-bend achromat with reverse bending magnets gives a natural emittance of 42 pm operated at 6 GeV. The x-ray brightness is predicted to increase by more than two orders of magnitude. Challenges are many, but appear manageable based on thorough simulation and in light of the experience gained from world-wide operation of 3\text{rd}-generation light sources. The upgraded ring will operate in swap-out mode, which has allowed pushing the performance beyond the limits imposed by conventional operation. | ||
![]() |
Slides THXGBD1 [14.684 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THXGBD1 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAK005 | Measuring the Coupling Impedance of Vacuum Components for the Advanced Photon Source Upgrade Using a Goubau Line | 3211 |
SUSPF074 | use link to see paper's listing under its alternate paper code | |
|
||
The Planned upgrade of the Advanced Photon Source to a multi-bend achromat (MBA) will increase the x-ray brightness by two to three orders of magnitude. Storing such an intense beam stably inside the narrow gap vacuum chambers requires sophisticated and appropriately designed rf-components that helps to minimize rf heating and collective instabilities associated with the impedance of these small-aperture vacuum components. As part of this effort, my research focuses on impedance measurement and simulation of various MBA vacuum components. In this paper, we briefly introduce the novel Goubau line (G-line) test fixture for the impedance measurement, at first, and then present our measurements data along with simulations with simulations for various vacuum components designed for the APS Upgrade. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK005 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |