Paper | Title | Page |
---|---|---|
WEPAK015 | Beam Gate Control System for SuperKEKB | 2124 |
|
||
The electron beam pulses of injector linac for the SuperKEKB collider are enabled and disabled by Beam Gate control system. This system controls the delivery of triggers to the electron guns at the injector. Also, the septum and kicker magnets for injection point of main ring are controlled with this Beam Gate to avoid unnecessary operation and to prolong their lifetime. The Beam Gate synchronizes the enabling and disabling operations of these hardware even though they are about 1km distant. Besides, from the phase-2 operation, the kicker and septum magnets for newly constructed damping ring becomes controlled apparatus of this system. We develop the new Beam Gate control system with the Event Timing System network*. The new system improves the unsatisfied performance of Beam Gate in the phase-1 operation and realizes the complicated control for phase-2. The advantages of new system are: the control signal is delivered via Event nettork, so that we do not need to cable new network. The enabling and disabling operations for distant hardware are surely synchronized by the Event Timing System.
* H. Kaji et al., "Construction and Commissioning Event Timing System at SuperKEKB", Proceedings of IPAC14, Dresden, Germany (2014). |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK015 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF045 | Synchronized Beam Position Measurement for SuperKEKB Injector Linac | 4159 |
|
||
Toward SuperKEKB project, the injector linac upgrade is ongoing for aiming at the stable beam operation with low emittance and high intensity bunch charge. One of the key challenges is a low emittance preservation of electron beam because the vertical emittance of 20 mm.mrad or less should be transported to the main ring without a damping ring. For this purpose, the fine alignment of accelerator components is a crucial issue since the linac alignment was badly damaged by the big earthquake in 2011. From the simulation results of emittance growth, the alignment of the quadrupole magnets and accelerating structures should be conducted at the level of 300 um in rms along the 600-m-long linac. In addition, we are aiming at the level of 100 um alignment in rms within the short range distance of 100 m long. Even after the fine component alignment can be achieved, the fine beam orbit manipulation is necessary for low emittance preservation. For these reasons, we have developed the new BPM readout system based on VME64x. The new system has improved the precision of beam position measurement up to 3 um from 25 um. We will describe the software development of the new BPM readout system. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF045 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |