Author: Khabiboulline, T.N.
Paper Title Page
MOZGBD3 Performance of the First LCLS-II Cryomodules: Issues and Solutions 34
 
  • N. Solyak, E. Cullerton, J. Einstein-Curtis, E.R. Harms, B.D. Hartsell, J.P. Holzbauer, T.N. Khabiboulline, A. Lunin, Y.M. Pischalnikov, R.P. Stanek, G. Wu
    Fermilab, Batavia, Illinois, USA
  • O. Napoly
    CEA/DSM/IRFU, France
 
  LCLS-II 4 GeV linac is on the middle production stage. Linac contains 40 cryomodules of 1.3 GHz and 3 cryomodules of 3.9 GHz, including spares. Fermilab and JLAB share responsibility for cryomodule design, assembly and test. Paper will overview the performance of the cryomodules it the tests, lessons learned and modifications in design to improve performance.  
slides icon Slides MOZGBD3 [8.630 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMK012 Update on Plasma Processing R&D for LCLS-II 2656
 
  • P. Berrutti, A. Grassellino, T.N. Khabiboulline, M. Martinello
    Fermilab, Batavia, Illinois, USA
  • M. Doleans, S.-H. Kim, K.E. Tippey
    ORNL, Oak Ridge, Tennessee, USA
  • D. Gonnella, G. Lanza, M.C. Ross
    SLAC, Menlo Park, California, USA
 
  Funding: Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. DOE
SRF cavities performance preservation is crucial, from vertical test to accelerator operation. Field emission is still one of the main problems to overcome and plasma cleaning has been proven successful by SNS, in cleaning field emitters and increasing the work function of Nb. A collaboration has been established between FNAL, SLAC and ORNL with the purpose of applying plasma processing to LCLS-II cavities, in order to minimize and overcome field emission without affecting the high Q of N-doped cavities. The recipe will follow the neon-oxygen active plasma adopted at SNS, allowing in-situ processing of cavities and cryomodules from hydrocarbon contaminants. A novel method for plasma ignition has been developed at FNAL: a plasma glow discharge is ignited using high order modes to overcome limitations imposed by the fundamental power coupler. The results of experiments on 9-cell LCLS-II cavity are presented, along with plasma ignition studies. In addition the RF system is shown and N-doped Nb samples studies are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMK012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML008 Tuner Testing of a Dressed 3.9 GHz Cavity for LCLS-II at Fermilab 2690
 
  • J.P. Holzbauer, S. Aderhold, T.N. Khabiboulline, Y.M. Pischalnikov, W. Schappert, J.C. Yun
    Fermilab, Batavia, Illinois, USA
  • C. Contreras-Martinez
    FRIB, East Lansing, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
Fermilab is responsible for the design of the 3.9 GHz cryomodule for LCLS-II. Integrated acceptance testing of a dressed 3.9 GHz cavity for the LCLS-II project has been done at the Fermilab Horizontal Test Stand. This test included a slim blade tuner (based on INFN & XFEL designs) with integrated piezoelectric fast/fine tuner. This paper will present results of the mechanical setup, cold testing, and cold function of this tuner including fast and slow tuner range, sensitivity, and hysteresis.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML022 3.9 GHz Power Coupler Design and Tests for LCLS-II Project 2727
 
  • N. Solyak, I.V. Gonin, C.J. Grimm, E.R. Harms, T.N. Khabiboulline, A. Lunin, O.V. Prokofiev, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  LCLS-II linac requires two 3.9 GHz cryomodules (eight cavities per CM), operating up to 16MV/m in cw regime. Fermilab has designed and built few prototypes of the cavity and auxiliaries and tested them at the vertical and horizontal cryostats. Fundamental power coupler, based on existing design (FLASH, XFEL) was redesign for 2kW average power. We built three prototypes and tested them at room temperature test stand. One coupler was assembled on the cavity and tested at horizontal cryostat as part of design verification program. Test results and comparison with simulations are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML023 Design and Test Results of the 3.9 GHz Cavity for LCLS-II 2730
 
  • N. Solyak, S. Aderhold, S.K. Chandrasekaran, C.J. Grimm, T.N. Khabiboulline, A. Lunin, O.V. Prokofiev, G. Wu
    Fermilab, Batavia, Illinois, USA
 
  The LCLS-II project uses sixteen 3.9 GHz superconduct-ing cavities to linearize energy distribution before the bunch compressor. To meet LCLS-II requirements origi-nal FNAL design used in FLASH and XFEL was signifi-cantly modified to improve performance and provide reliable operation up to 16 MV/m in cw regime [1-3]. Four prototype cavities were built and tested at vertical cryo-stat. After dressing, one cavity was assembled and tested at horizontal cryostat as part of design verification pro-gram. All auxiliaries (magnetic shielding, power and HOM couplers, tuner) were also re-designed and tested with this cavity. In this paper we will discuss cavity and coupler design and test results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL035 Design of β=0.65, 5 Cells, 644 MHz Elliptical Cavity for FRIB Upgrade 3712
 
  • M. Xu, C. Compton, C. Contreras-Martinez, W. Hartung, S.H. Kim, S.J. Miller, P.N. Ostroumov, A.S. Plastun, J.T. Popielarski, L. Popielarski, M.A. Reaume, K. Saito, A. Taylor, J. Wei, T. Xu, Q. Zhao
    FRIB, East Lansing, USA
  • I.V. Gonin, T.N. Khabiboulline, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the U.S. DOE Office of Science under Cooperative Agreement DE-SC0000661 and the NSF under Cooperative Agreement PHY-1102511, the State of Michigan and Michigan State University.
The superconducting (SC) linac of the Facility for Rare Isotope Beams (FRIB) under construction will deliver 200 MeV/u, 400 kW beam to the target for producing rare isotopes at Michigan State of University (MSU). For further beam energy upgrade, we have designed the β = 0.65, 5 cells, 644 MHz elliptical cavity. The beam energy can be upgraded to 400 MeV/u by installing 11 cryomodules to the available space in the FRIB tunnel.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)