Paper | Title | Page |
---|---|---|
TUPMF002 | A Cu Photocathode for the Superconducting RF Photoinjector of BERLinPro | 1247 |
|
||
The initial commissioning of the Superconducting RF (SRF) photoinjector is done with a Cu photocathode due to its robustness with regard to interactions with the SRF cavity of the injector. Here we present the preparation and characterization of a Cu photocathode plug and the diagnostics to insert the photocathode in the back wall of the SRF cavity. A polycrystalline bulk Cu plug was polished, particle free cleaned and characterized by x-ray photoelectron spectroscopy. During the transfer of the photocathode insert into the gun module the whole process was controlled by several diagnostic tools monitoring the insert position as well as RF, vacuum and cryogenic signals. We discuss the challenges of the photocathode transfer into an SRF cavity and how they can be tackled. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF002 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPML053 | The BERLinPro SRF Photoinjector System - From First RF Commissioning to First Beam | 1660 |
|
||
Funding: The work is funded by the Helmholtz-Association, BMBF, the state of Berlin and HZB. Helmholtz-Zentrum Berlin (HZB) is currently constructing a high average current superconducting (SC) ERL as a prototype to demonstrate low normalized beam emittance of 1 mm-mrad at 100 mA and short pulses of about 2 ps. To attain the required beam properties, an SRF based photo-injector system was developed and during the past year underwent RF commissioning and was setup within a dedicated diagnostics beamline called Gunlab to analyze beam dynamics of both, a copper cathode and a Cs2KSb cathode as well as their quantum efficiency at UV and green light respectively. The medium power prototype - a first stage towards the final high power 100 mA design - presented here features a 1.4 x λ/2 cell SRF cavity with a normal-conducting, high quantum efficiency CsK2Sb cathode, implementing a modified HZDR-style cathode insert. This injector potentially allows for 6 mA beam current and up to 3.5 MeV kinetic energy, limited by the modified twin TTF-III fundamental power couplers. In this contribution, the first RF commissioning results of the photo-injector module will be presented including dark current analysis as well as measured beam properties with an initially installed Copper cathode. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML053 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAF087 | Multi-Objective Optimization of an SRF Photoinjector with Booster Section for High Brightness Beam Performance | 3193 |
SUSPF071 | use link to see paper's listing under its alternate paper code | |
|
||
Several future accelerator projects, light sources and user experiments require high brightness electron beams. SRF photoinjectors operating in continuous-wave (cw) mode hold the potential to serve as an electron source generating beams of high average brightness and short bunch lengths. Different operation and design parameters of the SRF photoinjector impact the beam dynamics and thus the beam brightness. A universal multi-objective optimization program based on a genetic algorithm was developed to extract optimum gun parameter settings from Pareto-optimum solutions. After getting the first optimum results, the photoinjector is supplemented with a booster section downstream. The new optimization results are presented. Further, the optimization program is applied to evaluate the impact of the field flatness of the gun cavity on the high brightness performance. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF087 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF034 | Status Report of the Berlin Energy Recovery Linac Project BERLinPro | 4127 |
|
||
Funding: Work supported by the German Bundesministerium für Bildung und Forschung, Land Berlin and grants of Helmholtz Association The Helmholtz-Zentrum Berlin is constructing the Energy Recovery Linac Prototype BERLinPro, a demonstration facility for the science and technology of ERLs for future light source applications. BERLinPro is designed to accelerate a high current (100 mA, 50 MeV), high brilliance (norm. emittance below 1 mm mrad) cw electron beam. We report on the last year's progress, including the comissioning of the gun module as the first SRF component to be installed in BERLinPro. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF034 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |