Author: Hwang, J.G.
Paper Title Page
WEXGBE3 IBS Studies at BESSY II and MLS 1755
 
  • T. Mertens
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Berlin, Germany
  • T. Atkinson, J. Feikes, P. Goslawski, J.G. Hwang, A. Jankowiak, J. Li, D. Malyutin, Y. Petenev, M. Ries, I. Seiler
    HZB, Berlin, Germany
 
  Intrabeam Scattering (IBS) effects will become a limiting factor for the attainable emittances and single-bunch currents in future electron storage rings and light sources. IBS studies were performed for BESSY II at the Helmholtz-Zentrum Berlin (HZB) and for the Metrology Light Source (MLS) at the Physikalisch-Technische Bundesanstalt (PTB) to quantify the IBS contributions to equilibrium beam sizes in these machines and make predictions for the BESSY II upgrade project, BESSY VSR. The energy dependence of IBS effects (γ −4 ) makes especially the MLS machine susceptible to IBS effects due to the relatively low energy ranges at which it can be operated (50 MeV-630 MeV). We compare experimental data with simulations and present IBS simulation results for BESSY VSR.  
slides icon Slides WEXGBE3 [0.916 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEXGBE3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK009 Applications of the Interferometric Beam Size Monitor at BESSY II 2103
 
  • M. Koopmans, P. Goslawski, J.G. Hwang, A. Jankowiak, M. Ries, A. Schälicke, G. Schiwietz
    HZB, Berlin, Germany
 
  For the upgrade project of the BESSY~II storage ring to BESSY~VSR * an interferometric beam size monitor was designed and set up. Since this system uses visible light it can be upgraded efficiently to provide bunch resolved measurements. These are required for machine commissioning, development and to ensure long term quality and stability of user operation of BESSY~VSR. Various applications of the system are outlined and measurements are presented.
* A. Jankowiak et al., eds., BESSY VSR Technical Design Study, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Germany, June 2015. DOI: 10.5442/R0001
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK010 Simulations and Measurements of the BPM Non Linearity and Kicker Timing Influence on the Tune Shift With Amplitude (TSWA) Measurement at BESSY II 2107
 
  • F. Kramer, P. Goslawski, J.G. Hwang, A. Jankowiak, P. Kuske, M. Ruprecht, A. Schälicke
    HZB, Berlin, Germany
 
  The Tune Shift With Amplitude (TSWA) does not only determine the position of the stable fix points for the Transverse Resonant Island Buckets (TRIBs) but also represents a global observable for the nonlinear optics in general. For theoretical investigations of the TRIBs a reliable nonlinear optics of the machine is required and thus all measurable global observables for the nonlinear optics are of great interest. The measurement of the TSWA for the BESSY II standard optics was performed using an injection kicker to excite high amplitude betatron oscillations and then extract the amplitude dependant frequency from the synchrotron radiation damped oscillation with a Hilbert transformation. With TRIBs optics the injection kicker was not able to sufficienty excite the beam. The impact and correctability of the BPM nonlinearity at the reached amplitudes and the reason for the failure of the excitation method for our TRIBs optics shall be looked onto in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK011 Development of the Electron-Beam Diagnostics for the Future BESSY-VSR Storage Ring 2110
 
  • G. Schiwietz, J.G. Hwang, M. Koopmans, M. Ries, A. Schälicke
    HZB, Berlin, Germany
 
  This contribution focusses on the different types of new or improved electron-beam monitors at BESSY II for bunch resolved measurements under future BESSY-VSR conditions. A new diagnostics platform, involving three different dipole beam lines will be built for different di-pole-related optical and THz methods. Our main concepts for robust future monitors for bunch length, beam size and position are presented in the following.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF030 VSR Injector Upgrade at BESSY II 4110
 
  • T. Atkinson, P. Goslawski, J.G. Hwang, M. Ries
    HZB, Berlin, Germany
  • T. Flisgen, T. Mertens
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Berlin, Germany
 
  BESSY VSR is a fully funded project at the Helmholtz-Zentrum in Berlin (HZB). The objective is to produce simultaneously both long and short pulses in the storage ring. The implications for the existing injector systems and the upgrade strategy are presented. Envisaged is a global upgrade which includes additional accelerating structures to reduce the bunch length in the booster, orbit measurements and implementing longitudinal feedback.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF035 Numerical Analysis of Excitation Property of Pulse Picking by Resonant Excitation at BESSY II 4131
 
  • J.G. Hwang, M. Koopmans, R. Müller, M. Ries, A. Schälicke
    HZB, Berlin, Germany
 
  The pulse picking by resonant excitation (PPRE) method is applied at BESSY II to provide pseudo single bunch operation by separating the radiation from one horizontally enlarged bunch from the light of the multi-bunch filling. The bunch is enlarged by an excitation with an external signal close to the tune resonance. The variation of the beam size depends strongly on the frequency and amplitude of the excitation signal. In this paper we show the properties of the PPRE bunch studied by analytical modeling and numerical calculations using Elegant. The simulation results are compared with beam size measurements using a new interferometry beam size monitor at BESSY II.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)