Author: Huang, X.
Paper Title Page
THPAK153 Linac Optics Correction With Trajectory Scan Data 3606
 
  • X. Huang, Y.-C. Chao, T.J. Maxwell
    SLAC, Menlo Park, California, USA
  • T. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  We proposed and tested a scheme to measure and correct linac optics by scanning the beam trajectory in the horizontal and vertical phase spaces. The trajectory data are compared to tracking data in a fitting scheme, from which we can derive the quadrupole strength errors. Simulation is carried out to evaluate the requirements and the performance of the method. The method is experimentally applied to FEL linacs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK153  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML116 AutoTuner: A General Graphical User Interface for Automated Tuning 4939
 
  • X. Huang
    SLAC, Menlo Park, California, USA
  • T. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  AutoTuner is a general graphical user interface (GUI) that we developed for automated tuning or online optimization. The GUI provides a convenient interface to select tuning knobs, objectives, and optimization algorithms and to change the tuning control parameters. Tuning setup can be created and saved for reuse. The progress of the tuning processing is plotted in real time. The tuning process can be paused, aborted, or resumed. We have tested the program for real-life accelerator tuning problems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML116  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML117 Study of the Impact of Linear Coupling on Off-Axis Injection 4943
 
  • X. Huang
    SLAC, Menlo Park, California, USA
  • T. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The next generation of storage ring light sources will likely operate with high linear coupling, which could potentially prevent the use of off-axis injection as large horizontal oscillation of the injected beam is coupled to the vertical plane. We did experiments on the SPEAR3 storage ring to study how linear coupling impact the dynamic aperture and the off-axis injection efficiency. The results show that the dynamic aperture is significantly reduced and injection efficiency can drop to zero when operated on the coupling resonance. However, with large nonlinear detuning, the dynamic aperture and high injection efficiency can survive with the stored beam at full coupling because the injected beam is shifted away from the coupling resonance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)