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Abstract

We proposed and tested two methods to measure and

correct linac optics by scanning the beam trajectory in the

horizontal and vertical phase spaces. The trajectory data are

compared to tracking data in a fitting scheme, from which we

can derive the quadrupole strength errors and BPM gains. A

local analysis that derives the angular kicks by quadrupoles

from BPM readings for places where BPMs and quadrupoles

are nearby is also used.

INTRODUCTION

Global correction of linear optics in storage rings is a

regular practice today. But there has not been a report of

successful global optics correction for long linacs such as

LCLS, SACLA, and European XFEL. These linacs consists

of hundreds of quadrupole magnets along the beam path.

The small errors of the quadrupoles could build up to sig-

nificantly distort the optics and hence affect the machine

performances. Measurement and correction of the linear

optics errors in long linacs could have a big impact in im-

proving the operation of such machines.

Global optics correction for a one-pass system has been

previously demonstrated. In Ref. [1] the trajectory response

matrix for a transport line is fitted to the lattice model for

quadrupole errors, in a manner similar to LOCO for storage

rings [2], which are then successfully used for optics cor-

rection. Ref. [3] proposed to fit turn-by-turn BPM data to

the lattice model directly and tested the scheme on a sec-

tion of the SPEAR3 storage ring. The turn-by-turn BPM

data simply provide sampling of the phase space which can

also been done in a linac. Therefore, both of the above two

approaches can be used for linac optics correction.

Ref. [4] proposed a method to sample and to represent

linac optics by grid scans of trajectories. Such data are suit-

able for lattice model fitting using the approach proposed in

Ref. [3]. In this study we applied this method to LCLS trajec-

tory scan data to derive the quadrupole errors in the model.

Given the particular arrangement of BPM and quadrupole

magnet positions in the LCLS, we were also able to use a

local analysis to calculate quadrupole strengths. The LCLS

trajectory scan data analysis in this study demonstrated that

the methods can be used to calibrate linear optics for linacs.

In the following we will first describe the LCLS machine

configuration and the trajectory scan data, followed by a

description of the methods, and the data analysis results. A

discussion and the conclusion are given toward the end.
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THE LCLS TRAJECTORY SCAN DATA

LCLS consists of an injector, a 1-km linac, a transport 
line, and a 132-m undulator section. The trajectory scan 
data we obtained cover the region from linac L3 to the dump. 
The ideal optics of LCLS for this region is shown in Fig. 1. 
The beam energy ranges from 4.5 GeV to 13.6 GeV. There 
are 126 working BPMs and 131 quadrupole magnets in this 
region, respectively.
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Figure 1: LCLS optics from Linac L3 to the dump.

Trajectory scan was done by using two steering magnets

on each of the two transverse planes to shift the beam tra-

jectory on a 6 × 6 grid in the phase space. Figure 2 shows

the raw data on two nearby BPMs at the beginning of the L3

section for both the horizontal and vertical planes. Gener-

ally, the maximum trajectory deviation is 250 µm or less. At

each grid point, 30 trajectories were recorded. Because the

incoming beam has angle and position jittering and BPMs

have random measurement errors, the 30 trajectories are dis-

persed around the intended grid point. The rms of the BPM

readings for each grid point ranges from 5 µm to 15 µm.

SVD analysis of the trajectory data of the same grid point

indicates that the variance is dominated by the few leading

modes, whose spatial patterns show the signature of betatron

phase advance. Therefore, most of the noise comes from

trajectory jittering, not real BPM noise. The jittering noise

does not affect the methods we used in this study.
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Figure 2: Trajectory scan data on BPM 10 and 12 as an

example. Left: horizontal; right: vertical.
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THE DATA ANALYSIS METHODS

Two methods are used to process the trajectory scan data in

order to determine the quadrupole errors in the lattice model.

The first one is a local analysis that takes advantage of the

special feature of the LCLS linac section that the BPMs are

located inside the quadrupoles. The second method is the

approach of fitting trajectory data directly to the lattice.

Local Analysis

In the LCLS linac section L3, a quadrupole and a BPM

are located in the same gap between adjacent RF structures

for about every 12.3 m and the BPM is located at the center

of the quadrupole. The quadrupole length is 0.107 m. The

situation is as illustrated in Figure 3.

Figure 3: BPMs and quadrupoles in LCLS linac section L3.

Because the quadrupoles are thin and are at the same

location as BPMs, the angle coordinates in the drift space

can be directly calculated using BPM readings.

x
′

− =
(x2 − x1)

L

3E1 − E2

2E1

, x
′

+
=

(x3 − x2)

L

E3 + E2

2E2

(1)

where x1,2,3 are horizontal beam positions at three consecu-

tive BPMs, E1,2,3 are beam energies at these locations, x
′
±

are horizontal angle coordinates before and after quadrupole

Q2 (in Figure 3), and L is the length of the drift space. The

strength of the quadrupole Q2 can be derived subsequently

from,

∆x
′
≡ x

′

+
− x

′

− = [K Lq]x2. (2)

The coefficient [K Lq] can be obtained from a linear fitting

from trajectory scan data. Figure 4 shows an example using

data for one quadrupole in L3.
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Figure 4: Linear fit of angle coordinate changes vs. position

to derive quadrupole strength for one quadrupole in L3.

The effect of the finite length of the quadrupoles can be

incorporated using the model strength of the magnets.

Global fitting of tracking data

If the transfer matrix between two BPMs is known, the 
angle coordinates can be derived from BPM readings. A 
drift space is the simplest case. The situation in Fig. 3 is 
another. Knowing the angle and position coordinates of 
the beam at one BPM, the coordinates at other BPMs can 
be predicted by tracking through the lattice model. The pre-

dicted coordinates can be compared to measurements. The 
differences can be used to adjust the quadrupole strengths 
in the model in a fitting scheme.

Because the trajectory shifts at various BPMs for the 
same trajectory have to be consistent, it is possible 
deduce the BPM calibration and roll errors through 
fitting. At each BPM, the predicted BPM readings (x̃,ỹ) are 
related to track-ing coordinates (x̄, ȳ) by

x̃

ỹ

)

=
cos θ sin θ

− sin θ cos θ

)

gx x̄

gy ȳ

)

, (3)

where θ is the BPM roll and gx,y are horizontal and vertical

gains, respectively.

The fitting of the lattice model is a least-square problem,

which is aimed at minimizing the objective function

χ2
=

N
∑

n=1

M
∑

i=1








xi (n) − x̃i (p)

σxi

)2

+

yi (n) − ỹi (p)

σyi

)2






, (4)

where N is the number of trajectories, M is the number of

BPMs, p is a vector of fitting parameters, and σx,y are BPM

noise sigma. The least-square problem can be solved with

the Levenberg-Marquadt method.

An important note is that adjacent quadrupoles in the

lattice model may have a small separation in betatron phase

advance and therefore their contributions to the χ2 have

similar patterns and are difficult to resolve. The symptom

will show up as small singular values in the Jacobian matrix

of the residual vector with respect to the fitting parameters,

which in turn lead to large fitted quadrupole errors (∆K).

This can be solved by using constrained fitting which limits

the size of ∆K by adding penalty terms to χ2 [5].

A special issue for one-pass systems is that quadrupoles to-

ward the end of the line are less constrained by the data since

a quadrupole only affect the readings on downstream BPMs

and there are few BPMs downstream these quadrupoles. One

solution may be to use a pair of BPMs at the end of the line

to derive the phase space coordinates, track backwards, and

combine the comparison with the forward tracking results.

The weights of the penalty terms in the constrained fitting for

these quadrupoles can also be changed to reduce unreliable

excursions in the under-constrained directions.

The fitting approach has been previously tested with a

section of a storage ring [3], although there turn-by-turn orbit

data were used. The same approach applies to a transport line

or a linac as long as the trajectory data sufficiently sample

the phase space.
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APPLICATION TO LCLS

Here we use LCLS L3 linac data to illustrate the methods 
described in the previous section. L3 is the acceleration 
section right after the BC2 bunch compressor which 
accel-erates the beam from 4.5 GeV to the full energy. 
There are 50 BPMs and 50 Quadrupole magnets in this 
section, among which BPM 1-47 and Quad 1-47 are at 
the same locations as shown in Fig. 3. The energy 
increase between two adjacent quadrupole magnets is 
approximately 0.2 GeV. The local analysis described in 
section can be applied here. Figure 5 shows the quadrupole 
gradient obtained by apply-ing this method to the 
trajectory scan data. We see good agreement between the 
measurement and the ideal model except at five 
quadrupoles (Quad 9-14 in the figure). These quadrupoles 
were used in optics matching tuning and were thus 
deliberately changed from their model values.
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Figure 5: Quadrupole gradients in L3 by local analysis of

trajectory data is compared to the ideal model values.

The global fitting method is also applied. There are several

locations in LCLS where two BPMs are separated by a drift

space. Here the phase space coordinates are derived with

BPMs BSY39 (#50) and BSY83 (#53) and are used to track

backward using the code AT [6]. Modifications were made

to AT to account for the effects of energy change. The fitted

quadrupole errors (∆K) are compared to the local analysis

results. The global fitting method also found the same large

errors for the five quadrupoles (Fig. 6).
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Figure 6: Comparison of∆K - differences between measured

quadrupole gradients and model values - obtained by local

analysis and global fitting.

The differences between the measured and tracked trajec-

tories before and after the model is calibrated by fitting are

shown in Fig. 7. There are big differences between mea-

surement and tracking before the large errors for 
quadrupoles 9-14 are dialed in the model.

Figure 7: Differences between measurement and tracking

before and after model calibration. Tracking is backward.

The global fitting analysis was also performed for three

other sections in the LCLS and obtained reasonable results.

SUMMARY

We applied two data analysis methods to process trajectory

scan data for the LCLS. One is a local analysis that takes

advantage of the fact that in the L3 acceleration section

quadrupoles are thin and overlap with BPMs in location

which allows us to derive the change of angle coordinates

and in turn the quadrupole gradients. The second approach

is to derive phase space coordinates using a pair of BPMs

separated by a drift space and use them in tracking. The

tracked coordinates are compared to measurement in a least-

square fitting scheme from which BPM gains and quadrupole

strengths can be simultaneously obtained.

The quadrupole error results obtained with the two meth-

ods for the LCLS L3 linac agree with each other and are

consistent with the operation setting. The quadrupole errors

could be used to globally correct the optics errors in the

LCLS linac.
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