Author: He, X.
Paper Title Page
TUPMF061 Physical Design of the 500 MeV Electron Linac for the High Energy Photon Source 1404
 
  • S. Pei, D.Y. He, X. He, J.L. Li, J. Liu, X. Ma, C. Meng, X. Wang, O. Xiao, J.R. Zhang, Z.S. Zhou
    IHEP, Beijing, People's Republic of China
  • S. Shu
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People's Republic of China
 
  Funding: Work supported by the HEPS project and the National Natural Science Foundation of China (11475201). peisl@ihep.ac.cn
The High Energy Photon Source (HEPS) is a 6 GeV light source with ultra-low emittance, it is proposed to be built at Huairou district, northeast suburb of Beijing, China. A 500 MeV electron linac will be used to generate the electron beam for injection into the booster. Here the preliminary physical design of the electron linac is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF030 Optimization of Klystron Efficiency with MOGA 2419
 
  • C. Meng, X. He, S. Pei, S.C. Wang, O. Xiao, Z.S. Zhou
    IHEP, Beijing, People's Republic of China
 
  As the very important element of accelerator the klystron provide power to cavities for accelerating. Considering the accelerator cost of construction and running, the improvement of klystron efficiency is one developing hotspot of klystron research. In this paper the optimization method of klystron efficiency with MOGA based on 1D simulation program is proposed and the influences on klystron efficiency will be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF031 Development of a High-Power High-Directivity Directional Coupler and Four Power Dividers for S-Band 2422
 
  • X. He, J. Lei, J.R. Zhang
    IHEP, Beijing, People's Republic of China
 
  A novel Bethe-hole S band directional coupler has been designed based on some structural optimizations, the prototype has been tested with a Directivity of more than 30 dB. The new directional coupler can also hold higher power compared to the old type, which is more useful for the future accelerator applications. Four power dividers using different structures are studied and the best one is chosen for fabrication. The prototype with matching rod in the middle has got qualified microwave cold test results and has been used during the whole microwave commissioning of an accelerating structure, the performance is quite stable.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF033 RF Study And Cold Test of an S-band Spherical Cavity Pulse Compressor 2429
 
  • J. Lei, X. He, M. Hou, X.P. Li, G. Pei, H. Wang, J.B. Zhao
    IHEP, Beijing, People's Republic of China
  • S. Shu
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People's Republic of China
 
  An S-band (2856 MHz) spherical cavity pulse compressor has been designed, fabricated and tested in the Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS). The pulse compressor consists of a special 3 dB coupler and only one spherical energy storage cavity, two TE114 modes are chosen to oscillate in which for fairly high unload Q factor. The prototype was made of aluminum for studying the performance of the pulse compressor and checking the validity of the simulations. The cold test results of the aluminum cavity are also presented. The copper coating on the whole internal surface of the aluminum spherical cavity is in progress and the test results will also be presented in the future.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)