Paper | Title | Page |
---|---|---|
TUPML053 | The BERLinPro SRF Photoinjector System - From First RF Commissioning to First Beam | 1660 |
|
||
Funding: The work is funded by the Helmholtz-Association, BMBF, the state of Berlin and HZB. Helmholtz-Zentrum Berlin (HZB) is currently constructing a high average current superconducting (SC) ERL as a prototype to demonstrate low normalized beam emittance of 1 mm-mrad at 100 mA and short pulses of about 2 ps. To attain the required beam properties, an SRF based photo-injector system was developed and during the past year underwent RF commissioning and was setup within a dedicated diagnostics beamline called Gunlab to analyze beam dynamics of both, a copper cathode and a Cs2KSb cathode as well as their quantum efficiency at UV and green light respectively. The medium power prototype - a first stage towards the final high power 100 mA design - presented here features a 1.4 x λ/2 cell SRF cavity with a normal-conducting, high quantum efficiency CsK2Sb cathode, implementing a modified HZDR-style cathode insert. This injector potentially allows for 6 mA beam current and up to 3.5 MeV kinetic energy, limited by the modified twin TTF-III fundamental power couplers. In this contribution, the first RF commissioning results of the photo-injector module will be presented including dark current analysis as well as measured beam properties with an initially installed Copper cathode. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML053 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPML047 | Study on RF Coupler Kicks of SRF Cavities in the BESSY VSR Module | 2804 |
|
||
The BESSY VSR upgrade of the BESSY II light source represents a novel approach to simultaneously store long (ca. 15ps) and short (ca. 1.7ps) bunches in the storage ring with the standard user optics. This challenging goal requires installation of four new SRF multi-cell cavities (2x1.5GHz and 2x1.75GHz) equipped with strong waveguide HOM dampers ensuring tolerable beam coupling impedance, necessary for stable operation. These cavities will operate at high 20MV/m in CW mode and at the zero-crossing phase according to the accelerating voltage. Consequently the transverse voltages will be maximum and can impact the transverse beam dynamics. The asymmetric character of those transverse kicks are caused by cavity fundamental power couplers (FPC) with strong monopole terms, introducing transverse kick to on-axis particles. Different FPC orientations were analyzed to optimize the net coupler kick from the four cavity chain. The coupler kick strength of each cavity is estimated taking into account accelerating mode amplitudes and phases required for operation in VSR mode. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML047 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPML048 | HOM Power Levels in the BESSY VSR Cold String | 2808 |
|
||
The BESSY VSR upgrade of the BESSY II light source represents a novel approach to simultaneously store long (ca. 15ps) and short (ca. 1.7ps) bunches in the storage ring. This challenging goal requires installation of four new SRF cavities (2x1.5 GHz and 2x1.75 GHz) in one module for installation in a single straight. These cavities are equipped with strong waveguide HOM dampers necessary for stable operation. The expected HOM power and spectrum has been analyzed for the complete cold string. The cold string is a combination of various elements such as SRF cavities, bellows with and without shielding, warm HOM beampipe absorbers and UHV pumping domes. The presented study is performed for various BESSY VSR bunch filling patterns with 300 mA beam current. The contribution of each component to the total HOM power is presented. In addition the optimization of different cavity arrangements in the module is performed in order to reach the optimal operation conditions with equally distributed power levels along the string and tolerable beam coupling impedance. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML048 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAF085 | Estimation of Dielectric Losses in the Bessy VSR Warm Beam Pipe Absorbers | 3185 |
|
||
Funding: Work supported by the German Bundesministerium für Bildung und Forschung, Land Berlin and grants of Helmholtz Association. Currently Helmholtz Zentrum Berlin prepares the update of the BESSY II ring to BESSY VSR. The updated ring will be capable to simultaneously store short and long bunches to satisfy the various user demands. For this sake, a cryomodule accommodating two 1.5 GHz and two 1.75 GHz superconducting cavities will be installed into the storage ring. The cavity string will be equipped with warm dielectric absorber rings at both ends. Together with the waveguide dampers of the cavities, these rings damp electromagnetic fields excited by the beam. This contribution presents the estimation of the dielectric losses in the beam pipe absorber rings of the BESSY VSR module. The presented approach is based on determining a broad band impedance of the dielectric ring by exciting the numerical model with a single broad band Gaussian bunch. Subsequently, the power deposited into the ring is estimated in frequency domain by multiplying the impedance with the square of the beam current for all considered harmonics of the beam. Finally, these power contributions are added up. In addition to details of the scheme, the contribution presents results for the recent absorber layout of the BESSY VSR string. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF085 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF032 | Preparation and Testing of the BERLinPro Gun 1.1 Cavity | 4117 |
|
||
Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of the Helmholtz Association For the BERLinPro energy recovery LINAC, HZB is developing a superconducting 1.4-cell electron gun, which, in its final version, is planned to be capable of CW 1.3 GHz operation with 77 pC/bunch. For this purpose a series of three superconducting cavities, denoted as Gun 1.0, Gun 1.1 (both designed for 6 mA) and Gun 2.0 (100 mA) is foreseen. Here the status of the Gun 1.1 cavity is described, including results of the recent vertical testing. Lessons learned from the production and preparation process are summarized, also in order to identify issues critical for the production of Gun 2.0. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF032 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF033 | Design of the Beamline Elements in the BESSY VSR Cold String | 4123 |
|
||
Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of the Helmholtz Association The four SRF cavities in the BESSY VSR module will be linked by bellows, which will be equipped with inner coaxial shielding pipes to prevent both parasitic fundamental mode losses and beam-induced heating. The central bellow will also act as a collimator for synchrotron radiation generated in the closest upstream dipole magnet. Additional bellows at the module's ends are needed to connect with the warm BESSY beam pipe. Outside the module the beam pipe cross section transitions will be located, which will be equipped with toroidal HOM absorbing elements. In the paper the recent design considerations and specifications for all those components will be described. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF033 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF034 | Status Report of the Berlin Energy Recovery Linac Project BERLinPro | 4127 |
|
||
Funding: Work supported by the German Bundesministerium für Bildung und Forschung, Land Berlin and grants of Helmholtz Association The Helmholtz-Zentrum Berlin is constructing the Energy Recovery Linac Prototype BERLinPro, a demonstration facility for the science and technology of ERLs for future light source applications. BERLinPro is designed to accelerate a high current (100 mA, 50 MeV), high brilliance (norm. emittance below 1 mm mrad) cw electron beam. We report on the last year's progress, including the comissioning of the gun module as the first SRF component to be installed in BERLinPro. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF034 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |