Paper | Title | Page |
---|---|---|
TUPAF039 | Electron Cooling Simulation and Experimental Benchmarks at LEIR | 776 |
|
||
A fast and accurate simulation of Electron Cooling has recently been implemented in the tracking code RF-Track. The implementation, which is based on a "hybrid kinetic" model, enables the simulation of a large variety of realistic scenarios, including imperfections such as gradients in the electron density, misalignments of electrons / ions / solenoidal fields, both in the static and in the dynamic regimes. Benchmarks of the simulations against measurements performed at LEIR, using Lead and Xenon ions, are presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF039 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAF039 | IP Orbit Correction Update for HL-LHC | 3048 |
|
||
Funding: Research supported by the HL-LHC project. The HL-LHC design foresees a substantial modification of the LHC layout next to the low beta Interaction Points (IPs), namely IP1 and IP5. The inner triplets will be replaced by larger aperture ones to achieve lower beta at the IPs and crab cavities (CCs) will be installed. This will add new constraints to the orbit control, which required a careful choice of location and strength of the new orbit correctors to be installed in the area. The new orbit correction system will need to correct for the unavoidable imperfections, but also provide the necessary flexibility for implementing and optimising the crossing scheme. Detailed studies of the HL-LHC layout versions HLLHCV1.0 and HLLHCV1.1 were already performed. This paper is the continuation of these works and is based on the latest layout HLLHCV1.3. A simplification of the previous analysis is proposed that helps to identify the dominant imperfections. The expected performance and tolerances of the present layout are presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF039 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAF040 | Estimated Impact of Ground Motion on HL-LHC Beam Orbit | 3052 |
|
||
Funding: Research supported by the HL-LHC project. The High Luminosity LHC (HL-LHC) will require unprecedented orbit stability at the low beta collision points (IP1 and IP5), and the effect of seismic noise might become a relevant source of luminosity loss. Many studies have been conducted in the past to characterise the actual ground motion in the LHC tunnel, and recently a few geo-phones have been installed to permanently monitor the ground stability at IP1 and IP5. An estimate of the impact of the main machine element vibration on orbit at the IPs and collimators is presented, together with a first look at the data collected by the installed geo-phones. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF040 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF014 | First Experiments at the CLEAR User Facility | 4066 |
|
||
The new "CERN Linear Electron Accelerator for Research" (CLEAR) facility at CERN started its operation in fall 2017. CLEAR results from the conversion of the CALIFES beam line of the former CLIC Test Facility (CTF3) into a new testbed for general accelerator R&D and component studies for existing and possible future accelerator applications. CLEAR can provide a stable and reliable electron beam from 60 to 220 MeV in single or multi bunch configuration at 1.5 GHz. The experimental program includes studies for high gradient acceleration methods, e.g. for CLIC X-band and plasma technology, prototyping and validation of accelerator components, e.g. for the HL-LHC upgrade, and irradiation test capabilities for characterization of electronic components and for medical applications. An overview of the facility capabilities and a summary of the latest results will be presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF014 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |