Author: Faus-Golfe, A.
Paper Title Page
MOPML043 High Gradient Performance of an S-Band Backward Traveling Wave Accelerating Structure for Medical Hadron Therapy Accelerators 491
SUSPL097   use link to see paper's listing under its alternate paper code  
 
  • A. Vnuchenko, C. Blanch Gutiérrez, D. Esperante Pereira
    IFIC, Valencia, Spain
  • S. Benedetti, N. Catalán Lasheras, A. Grudiev, B. Koubek, G. McMonagle, I. Syratchev, B.J. Woolley, W. Wuensch
    CERN, Geneva, Switzerland
  • A. Faus-Golfe
    LAL, Orsay, France
  • T.G. Lucas, M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
  • S. Pitman
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  The high-gradient performance of an accelerating structure prototype for a medical proton linac is presented. The structure was designed and built using technology developed by the CLIC collaboration and the target application is the TULIP (Turning Linac for Proton therapy) proposal developed by the TERA foundation. The special feature of this design is to produce gradient of more than 50 MV /m in low-β accelerating structures (v/c=0.38). The structure was tested in an S-band test stand at CERN. During the tests, the structure reached over above 60 MV/m at 1.2 μs pulse length and breakdown rate of about 5x10-6 bpp. The results presented include ultimate performance, long term behaviour and measurements that can guide future optimization.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML044 Start-to-End Beam Dynamic Simulations for PRAE 495
 
  • A. Vnuchenko
    IFIC, Valencia, Spain
  • C. Bruni, M. El Khaldi, A. Faus-Golfe, P. Lepercq, C. Vallerand
    LAL, Orsay, France
  • A. Latina
    CERN, Geneva, Switzerland
 
  The PRAE project (Platform for Research and Applications with Electrons) aims at creating a multidisciplinary R&D facility in the Orsay campus gathering various scientific communities involved in radiobiology, subatomic physics, instrumentation and particle accelerators around an electron accelerator delivering a high-performance beam with energy up to 70 MeV and later 140 MeV, in order to perform a series of unique measurements and future challenging R&D. In this paper we report the first start-to-end simulations from the RF gun, going through the linac and finally to the different experimental platforms. The beam dynamics simulations have been performed using a concatenation of codes. In particular for the linac the RF-Track code recently developed at CERN will be used and benchmarked. The different working points have been analysed in order to minimise the transverse emittance and the beam energy spread including space charge effects at low electron energies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML050 A Massive Open Online Course on Particle Accelerators 512
 
  • N. Delerue, A. Faus-Golfe
    LAL, Orsay, France
  • M.E. Biagini
    INFN/LNF, Frascati (Roma), Italy
  • E. Bründermann, A.-S. Müller
    KIT, Eggenstein-Leopoldshafen, Germany
  • P. Burrows
    JAI, Oxford, United Kingdom
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • C. Darve, R.A. Yogi
    ESS, Lund, Sweden
  • V.V. Dmitriyeva, S.M. Polozov
    MEPhI, Moscow, Russia
  • J. Kvissberg
    Lund University, Lund, Sweden
  • P. Lebrun
    JUAS, Archamps, France
  • E. Métral, H. Schmickler, J. Toes
    CERN, Geneva, Switzerland
  • S.P. Møller
    ISA, Aarhus, Denmark
  • L. Rinolfi
    ESI, Archamps, France
  • A. Simonsson
    Stockholm University, Stockholm, Sweden
  • V.G. Vaccaro
    Naples University Federico II and INFN, Napoli, Italy
 
  Funding: European Union H2020 - ARIES Project
The TIARA (Test Infrastructure and Accelerator Research Area) project funded by the European Union 7th framework programme made a survey of provision of education and training in accelerator science in Europe highlighted the need for more training opportunities targeting undergraduate-level students. This need is now being addressed by the European Union H2020 project ARIES (Accelerator Research and Innovation for European Science and Society) via the preparation of a Massive Online Open Course (MOOC) on particle accelerator science and engineering. We present here the current status of this project, the main elements of the syllabus, how it will be delivered, and the schedule for providing the course.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML051 First Performance Calculations for the Very High Energy Electron Radiation Therapy Experiment at PRAE 516
 
  • A. Faus-Golfe
    LAL, Orsay, France
  • R. Delorme, Y. Prezado
    IMNC, Orsay, France
  • V. Favaudon, C. Fouillade, S. Heinrich, A. Mazal, A. Patriarca, P. Poortmans, P. Verrelle
    Institut Curie - Centre de Protonthérapie d'Orsay, Orsay, France
  • A. Hrybok
    National Taras Shevchenko University of Kyiv, Radiophysical Faculty, Kiev, Ukraine
 
  The Platform for Research and Applications with Electrons (PRAE) project aims at creating a multidisciplinary R&D platform at the Orsay campus, joining various scientific communities involved in radiobiology, subatomic physics, instrumentation, particle accelerators and clinical research around a high-performance electron accelerator with beam energies up to 70 MeV and later 140 MeV, in order to perform a series of unique measurements and challenging R&D. In this paper we will report the first optics design and performance evaluations of such a multidisciplinary machine, focusing on Very High Energy Electrons (VHEE) innovative Radiation Therapy (RT) applications in particular by allowing Grid and FLASH methodologies, which are likely to represent a major breakthrough in RT. Functional specifications include beam intensities to produce dose rates from 2 Gy/min to 100Gy/sec, beam sizes with diameters from 0.5 mm to 10 cm or more of homogeneous beams and monitoring devices with accuracy in the order of 1-2% for single or multiple beams and single or multiple fractions in biological and ppreclinical applications. High energies (>140 MeV) would be also needed for GRID therapy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL005 Construction and Commissioning of the S-Band High-Gradient RF Laboratory at IFIC 3619
 
  • D. Esperante Pereira, C. Blanch Gutiérrez, M. Boronat, J. Fuster, D. Gonzalez Iglesias, A. Vnuchenko
    IFIC, Valencia, Spain
  • N. Catalán Lasheras, G. McMonagle, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • A. Faus-Golfe
    LAL, Orsay, France
  • B. Gimeno
    UVEG, Burjasot (Valencia), Spain
 
  An S-Band High-Gradient (HG) Radio Frequency (RF) laboratory is under construction and commissioning at IFIC. The purpose of the laboratory is to perform investigations of high-gradient phenomena and to develop normal-conducting RF technology, with special focus on RF systems for hadron-therapy. The layout of the facility is derived from the scheme of the Xbox-3 test facility at CERN* and uses medium peak-power (7.5 MW) and high repetition rate (400 Hz) klystrons, whose RF output is combined to drive two testing slots to the required power. The design and construction of the various components of the system started in 2016 and has been completed. The installation and commissioning of the laboratory is progressing, with first results expected before mid 2018. The technical characteristics of the different elements of the system and the commissioning status together with preliminary results are described.
* N. Catalan Lasheras, et al., 'Commissioning of Xbox3: a very high capacity X-band RF test stand', Proc. LINAC2016, East Lansing, USA, September 2016.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)