Paper | Title | Page |
---|---|---|
TUPML031 | Characterization of Polarization-Dependent Emittance From an Array of Au Nanorods using Velocity Map Imaging Spectrometer | 1612 |
|
||
Electron beams of high quality, e.g., low emittance, are of crucial importance for cutting-edge scientific instruments, such as x-ray free electron lasers (XFELs) and ultrafast electron diffraction (UED) setups. A velocity-map-imaging (VMI) spectrometer was implemented to characterize the intrinsic root-mean-square (rms) normalized emittance from photocathodes. The spectrometer operated in both, spatial map imaging (SMI) and VMI modes. Therefore, spatial- and velocity-coordinates were recorded independently and quickly. The technique allows for fast complete emittance measurements, within minutes. A 75 μm pitch array of Au nanorods of dimension 100×30~nm, was studied under strong-field-emission regime by 100 fs 1 kHz 1.3 μm laser pulses with a 300×30 μm2 focus spot size on the sample. A patterned electron bunch was observed, each emitted from a single nanorod within the array. A polarization dependent photoemission study was performed showing a smaller rms-normalized divergence of 0.8 mrad with the laser polarization normal to the sample surface, compared to 1.15 mrad for the parallel case. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML031 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPML045 | Segmented Terahertz Driven Device for Electron Acceleration | 1642 |
|
||
Funding: ERC Synergy Grant AXSIS (609920), Deutsche Forschungsgemeinschaft (SPP1840 SOLSTICE and CUI EXC1074), and Gordon and Betty Moore foundation (ACHIP GBMF4744) We present a segmented THz based device (STEAM) capable of performing multiple high-field operations on the 6D-phase-space of ultrashort electron bunches. Using only a few microjoules of single-cycle THz radiation, we have shown record THz-based acceleration of >30 keV of an incoming 55keV electron beam, with a peak acceleration field gradient of around 70 MV/m that is comparable with that from a conventional RF accelerator. It can be scaled up to GV/m gradients that can accelerate electrons into the MeV regime. At the same time, the STEAM device can also manipulate the electrons that show high focusing gradient (2 kT/m), compression of electron bunches down to 100 fs and streaking gradient of 140 μrad/fs, which offers temporal profile characterizations with resolution below 10 fs. The STEAM device can be fabricated with regular mechanical machining tools and supports real-time switching between different modes of operation. It paves the way for the development of THz-based compact electron guns, accelerators, ultrafast electron diffractometers and Free-Electron Lasers. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML045 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |