Author: Espadanal, J.P.C.
Paper Title Page
TUPAF038 Prototyping Activities for a New Design of CERN's Antiproton Production Target 772
 
  • C. Torregrosa, M.E.J. Butcher, M. Calviani, J.P.C. Espadanal, R. Ferriere, L. Gentini, E. Grenier-Boley, L. Mircea Grec, A. Perillo-Marcone, R. Seidenbinder, N.S. Solieri, M.A. Timmins, E. Urrutia, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  Antiprotons are produced at CERN by impacting intense proton beams of 26 GeV/c onto a high-Z water-cooled target. The current design consists in an Ir core target in a graphite matrix and inserted in a Ti-6Al-4V assembly. A new target design has been foreseen for operation after 2021 aiming at improving the operation robustness and antiproton production yield, triggering several R&D activities during the last years. First, both numerical (use of hydrocodes) and experimental approaches were carried out to study the core material response under extreme dynamic loading when impacted by the primary proton beam. The lessons learnt from these studies have been then applied to further prototyping and testing under proton beam impact at the CERN-HiRadMat facility. A first scaled prototype consisting in Ta rods embedded in an expanded graphite matrix was irradiated in 2017, while in 2018, the PROTAD experiment will test different real-scale AD-Target prototypes, in which the old water-cooled assembly is replaced by a more compact air-cooled one, and different core geometry and material configurations are investigated. This contribution details these prototyping and testing activities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF084 Design, Prototyping Activities and Beam Irradiation Test for the New nTOF Neutron Spallation Target 2582
 
  • R. Esposito, M. Bergeret, J. Busom, M.E.J. Butcher, M. Calviani, R. Cimmino, T. Coiffet, J.P.C. Espadanal, L. Gentini, R. Illan Fiastre, V. Maire, F. Ogallar Ruiz, A. Perillo-Marcone, S. Sgobba, M.A. Timmins, C. Torregrosa, E. Urrutia, V. Vlachoudis
    CERN, Geneva, Switzerland
  • R. Logé
    EPFL, Lausanne, Switzerland
 
  A third-generation neutron spallation target for the neutron time-of-flight facility at CERN (nTOF) is currently undergoing the design and prototyping stage. The new design aims at improving reliability, increasing beam intensity on target and avoiding issues encountered in the current generation target, in particular the contamination of the cooling system water with radioactive spallation products coming from washing out lead. After a preliminary design and an initial prototyping stage*, a baseline solution has been defined consisting in a pure lead target core contained in a Ti-6Al-4V cladding and embedded in a massive Pb block. A backup solution has also been defined, consisting in a Ta-cladded W core embedded in a Pb block. Both solutions are currently undergoing the detailed design stage. This contribution details the prototyping activity, the robustness studies for accidental scenarios and the design of a beam irradiation test on prototypes of the target core.
R. Esposito et al., "Design of the new CERN nTOF neutron spallation target: R&D and prototyping activities," in Proc. of IPAC'17, Copenhagen, May 2017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMG002 Beam Dump Facility Target: Design Status and Beam Tests in 2018 2604
 
  • E. Lopez Sola, O. Aberle, P. Avigni, L. Bianchi, J. Busom, M. Calviani, M. Casolino, J.P.C. Espadanal, M.A. Fraser, S. Girod, B. Goddard, D. Grenier, M. Guinchard, C. Heßler, R. Illan Fiastre, R. Jacobsson, M. Lamont, A. Ortega Rolo, B. Riffaud, G. Romagnoli, L. Zuccalli
    CERN, Geneva, Switzerland
 
  The Beam Dump Facility (BDF) Project, currently in its design phase, is a proposed general-purpose fixed target facility at CERN, dedicated to the Search for Hidden Particles (SHiP) experiment in its initial phase. At the core of the installation resides the target/dump assembly, whose aim is to fully absorb the high intensity 400 GeV/c SPS beam and produce charmed mesons. In addition to high thermo-mechanical loads, the most challenging aspects of the proposed installation lie in very high energy and power density deposition that are reached during operation. In order to validate the design of the BDF target, a scaled prototype is going to be tested during 2018 in the North Area at CERN, upstream the existing beryllium primary targets. The prototype testing under representative beam scenarios will allow having an insight of the material response in an unprecedented regime. Online monitoring and an extensive Post Irradiation Experimental (PIE) campaign are foreseen. The current contribution will detail the design and handling aspects of the innovative Target Complex as well as the design of the BDF target/dump core and the design and construction of the prototype target assembly.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)