Paper | Title | Page |
---|---|---|
MOPMF055 | Update of the CLIC Positron Source | 236 |
|
||
The baseline positron source of CLIC has been optimised for the 3 TeV c.o.m. energy. Now the first stage of the CLIC is proposed to be at 380 GeV. Recently, the positron transmission efficiency from the tungsten target to the damping rings injection has been improved by 2.5 times. This opened the possibility for an optimisation of the whole positron source, comprising the injector linacs, aimed at improving its performance and its overall power efficiency. In this paper the key parameters of the positron source, which include the current and the energy of the primary electron beam, the thickness of the crystal and amorphous tungsten targets, the distance between the two targets, the adiabatic matching device (AMD) and pre-injector linacs, are optimized to improve the overall power efficiency. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF055 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAF070 | Commissioning of Beam Instrumentation at the CERN AWAKE Facility After Integration of the Electron Beam Line | 1993 |
|
||
The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) is a project at CERN aiming to accelerate an electron bunch in a plasma wakefield driven by a proton bunch*. The plasma is induced in a 10 m long Rubidium vapour cell using a pulsed Ti:Sapphire laser, with the wakefield formed by a proton bunch from the CERN SPS. A 16 MeV electron bunch is simultaneously injected into the plasma cell to be accelerated by the wakefield to energies in GeV range over this short distance. After successful runs with the proton and laser beams, the electron beam line was installed and commissioned at the end of 2017 to produce and inject a suitable electron bunch into the plasma cell. To achieve the goals of the experiment, it is important to have reliable beam instrumentation measuring the various parameters of the proton, electron and laser beams such as transverse position, transverse profile as well as temporal synchronization. This contribution presents the status of the beam instrumentation in AWAKE, including the new instruments incorporated into the system for measurements with the electron beam line, and reports on the performance achieved during the AWAKE runs in 2017.
* Gschwendtner E., et al. "AWAKE, the Advanced Proton Driven Plasma Wakefield Experiment at CERN", NIM A 829 (2016)76-82 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF070 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPAF076 | Availability Studies Comparing Drive Beam and Klystron Options for the Compact Linear Collider | 2013 |
|
||
The initial proposal for the Compact Linear Collider (CLIC) is based on a two beam-scheme to accelerate the main colliding beams. For low collision energies, the main beam could also be accelerated by powering the accelerating structures with klystrons instead of the two-beam scheme. This paper studies the feasibility of this new alternative in terms of machine availability. An implemented bottom-up availability model considers the components failure modes to estimate the overall availability of the system. The model is defined within a Common Input Format scheme and the AvailSim3 software package is used for availability simulations. This paper gives an overview of the systems affecting the beam powering availability and makes recommendations for availability improvements. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF076 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPMF014 | First Experiments at the CLEAR User Facility | 4066 |
|
||
The new "CERN Linear Electron Accelerator for Research" (CLEAR) facility at CERN started its operation in fall 2017. CLEAR results from the conversion of the CALIFES beam line of the former CLIC Test Facility (CTF3) into a new testbed for general accelerator R&D and component studies for existing and possible future accelerator applications. CLEAR can provide a stable and reliable electron beam from 60 to 220 MeV in single or multi bunch configuration at 1.5 GHz. The experimental program includes studies for high gradient acceleration methods, e.g. for CLIC X-band and plasma technology, prototyping and validation of accelerator components, e.g. for the HL-LHC upgrade, and irradiation test capabilities for characterization of electronic components and for medical applications. An overview of the facility capabilities and a summary of the latest results will be presented. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF014 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |