Paper | Title | Page |
---|---|---|
WEPML004 | Production Tuner Testing for LCLS-II Cryomodule Production | 2678 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. LCLS-II 1.3 GHz cryomodule production is well underway at Fermilab. Several dozen cavity/tuner systems have been tested, including tuning to 1.3 GHz, cold landing frequency, range/sensitivity of the slow tuner, and range/sensitivity of the fast tuner. All this testing information as well as lessons learned from tuner installation will be presented. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML004 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPML008 | Tuner Testing of a Dressed 3.9 GHz Cavity for LCLS-II at Fermilab | 2690 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. Fermilab is responsible for the design of the 3.9 GHz cryomodule for LCLS-II. Integrated acceptance testing of a dressed 3.9 GHz cavity for the LCLS-II project has been done at the Fermilab Horizontal Test Stand. This test included a slim blade tuner (based on INFN & XFEL designs) with integrated piezoelectric fast/fine tuner. This paper will present results of the mechanical setup, cold testing, and cold function of this tuner including fast and slow tuner range, sensitivity, and hysteresis. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML008 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAL034 | Dynamic Tuner Development for Medium β Superconducting Elliptical Cavities | 3709 |
SUSPL090 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Work supported by U.S. DOE SCGSR program under contract number DE-SC0014664, Michigan State University, and Fermi Research Alliance under contract N. DEAC02-07CH11959 with the U.S. DOE The Facility for Rare Isotope Beams (FRIB) is developing a 5-cell 644 MHz βopt=0.65 elliptical cavity for a future linac energy upgrade to 400 MeV/u for the heaviest uranium ions. Superconducting elliptical cavities operated in continuous wave, such as the ones for FRIB, are prone to microphonics which can excite mechanical modes of the cavities. It has been shown that the detuning due to microphonics can be mitigated with the use of piezo actuators (fast tuner) as opposed to the costly option of increasing the input RF power. The FRIB slow/fast dynamic tuner will be based on the Fermilab experience with similar tuners like those developed for the linac coherent light source (LCLS) II and proton improvement plan (PIP) II. This paper will present the results of tuner properties on the bench. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL034 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAL035 | Design of β=0.65, 5 Cells, 644 MHz Elliptical Cavity for FRIB Upgrade | 3712 |
|
||
Funding: Work supported by the U.S. DOE Office of Science under Cooperative Agreement DE-SC0000661 and the NSF under Cooperative Agreement PHY-1102511, the State of Michigan and Michigan State University. The superconducting (SC) linac of the Facility for Rare Isotope Beams (FRIB) under construction will deliver 200 MeV/u, 400 kW beam to the target for producing rare isotopes at Michigan State of University (MSU). For further beam energy upgrade, we have designed the β = 0.65, 5 cells, 644 MHz elliptical cavity. The beam energy can be upgraded to 400 MeV/u by installing 11 cryomodules to the available space in the FRIB tunnel. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL035 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |