Author: Burt, G.
Paper Title Page
MOPML050 A Massive Open Online Course on Particle Accelerators 512
 
  • N. Delerue, A. Faus-Golfe
    LAL, Orsay, France
  • M.E. Biagini
    INFN/LNF, Frascati (Roma), Italy
  • E. Bründermann, A.-S. Müller
    KIT, Eggenstein-Leopoldshafen, Germany
  • P. Burrows
    JAI, Oxford, United Kingdom
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • C. Darve, R.A. Yogi
    ESS, Lund, Sweden
  • V.V. Dmitriyeva, S.M. Polozov
    MEPhI, Moscow, Russia
  • J. Kvissberg
    Lund University, Lund, Sweden
  • P. Lebrun
    JUAS, Archamps, France
  • E. Métral, H. Schmickler, J. Toes
    CERN, Geneva, Switzerland
  • S.P. Møller
    ISA, Aarhus, Denmark
  • L. Rinolfi
    ESI, Archamps, France
  • A. Simonsson
    Stockholm University, Stockholm, Sweden
  • V.G. Vaccaro
    Naples University Federico II and INFN, Napoli, Italy
 
  Funding: European Union H2020 - ARIES Project
The TIARA (Test Infrastructure and Accelerator Research Area) project funded by the European Union 7th framework programme made a survey of provision of education and training in accelerator science in Europe highlighted the need for more training opportunities targeting undergraduate-level students. This need is now being addressed by the European Union H2020 project ARIES (Accelerator Research and Innovation for European Science and Society) via the preparation of a Massive Online Open Course (MOOC) on particle accelerator science and engineering. We present here the current status of this project, the main elements of the syllabus, how it will be delivered, and the schedule for providing the course.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF035 Investigating the Effect of Inhomogeneous Resistivity on Bulk RRR and Heat Conductivity Using a Lattice Green's Functions Method 2436
 
  • N.C. Shipman, A. Macpherson
    CERN, Geneva, Switzerland
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
 
  A method was developed to calculate the bulk RRR (residual resistivity ratio) which would be measured on a superconducting cavity or sample with an inhomogeneous resistivity and arbitrary geometry. The method involves modelling the object as a network of resistors and employs lattice Green's functions. A further adaptation of the method which allows the heat transport characteristics of such an object to be predicted is also described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL018 DQW HOM Coupler Design for the HL-LHC 3663
 
  • J.A. Mitchell
    Lancaster University, Lancaster, United Kingdom
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • R. Calaga
    CERN, Geneva, Switzerland
  • S. Verdú-Andrés, B. P. Xiao
    BNL, Upton, Long Island, New York, USA
 
  HOMs in the DQW crab cavity can produce large heat loads and beam instabilities as a result of the high current HL-LHC beams. The DQW crab cavity has on-cavity, coaxial HOM couplers to damp the HOMs whilst providing a stop-band response to the fundamental mode. Manufacturing experience and further simulations give rise to a set of desirable coupler improvements. This paper will assess the performance of the current HOM coupler design, present operational improvements and propose an evolved design for HL-LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL084 An X-Band Lineariser for the CLARA FEL 3848
 
  • L.S. Cowie, A.D. Brynes, J.K. Jones, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R. Apsimon, G. Burt, W.L. Millar
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • Ö. Mete
    UMAN, Manchester, United Kingdom
  • A.J. Moss
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  The CLARA FEL at Daresbury Laboratory will employ four S-band linacs to accelerate electron bunches to 250 MeV/c. In order to compress the bunch sufficiently to achieve peak currents suitable for FEL lasing, one must compensate for curvature imprinted on the longitudinal phase space of the bunch. For CLARA a harmonic RF linearization system has been designed to achieve this requirement. The linearization will be achieved by an X-band travelling wave cavity of the PSI/CERN design, which incorporates wake-field monitoring of the bunch position. A five-axis mover will align the cavity to the beam axis. Pulse compression of a 6 MW klystron pulse will provide the required power to achieve a 30 MV/m operational gradient.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL085 High Power RF Conditioning on CLARA 3852
 
  • L.S. Cowie, D.J. Scott
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Burt, W.L. Millar
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  The CLARA accelerator at Daresbury Laboratory will have 8 normal conducting RF cavities. Automating the high power RF conditioning of these cavities will mean a repeatable, research-lead process is followed. An auto-mated algorithm has been written in Python. A prototype algorithm was used to condition the first CLARA travel-ling wave linac in October 2017. The linac was success-fully conditioned over approximately 12 million pulses up to 27 MW for a 750 ns pulse. A more complex and robust algorithm was used to re-condition the standing wave 10 Hz photoinjector after a cathode change. The photoinjec-tor was conditioned to 10 MW for a 2.5 μs pulse in Feb-ruary 2018 over 2.1 million pulses. Conditioning method; differences for travelling and standing wave structures; difficulties and interesting phenomena are all discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL086 Superconducting Thin Film RF Measurements 3856
 
  • P. Goudket, L. Bizel-Bizellot, L. Gurran, O.B. Malyshev, S.M. Pattalwar, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Burt, L. Gurran
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • P. Goudket, T. Junginger, O.B. Malyshev, S.M. Pattalwar, R. Valizadeh
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • L. Gurran, T. Junginger
    Lancaster University, Lancaster, United Kingdom
 
  As part of an ongoing programme of SRF Thin Films development, a radiofrequency (RF) cavity and cryostat dedicated to the measurement of superconducting coatings at GHz frequencies was designed to evaluate surface resistive losses on a flat sample. The resonator has now been used for measurements on Thin Film samples. Results from a test on a sample previously tested at Cornell University are presented. In order to simplify the measurements and achieve a faster turnaround, the experiment will be moved to a new cryostat fitted with a cryocooler. This will limit the measurements to low power only, but will allow a much faster sorting of samples to identify those that would benefit from further investigation. A description of the system and initial results will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)