
INVESTIGATING THE EFFECT OF INHOMOGENEOUS RESISTIVITY

ON BULK RRR AND HEAT CONDUCTIVITY USING A LATTICE

GREEN’S FUNCTIONS METHOD

N. Shipman∗1,2, G. Burt2, J. Mitchell1,2 Lancaster University, Lancaster, UK

A. MacPherson, CERN, Geneva, Switzerland
1also at CERN, Geneva, Switzerland

2also at Cockroft Institute, Daresbury, UK

Abstract

A method was developed to calculate the bulk RRR (resid-

ual resistivity ratio) which would be measured on a supercon-

ducting cavity or sample with an inhomogeneous resistivity

and arbitrary geometry. The method involves modelling the

object as a network of resistors and employs lattice Green’s

functions. A further adaptation of the method which allows

the heat transport characteristics of such an object to be

predicted is also described.

INTRODUCTION

The RRR of a metal is defined as the ratio of the resistivity

at 300 K to the resistivity at a low temperature just above the

superconducting transition (in this paper ’low temperature‘

is defined as 10 K) as shown in Eq. (1) where ρ(T) is the

resistivity at temperature T [1].

RRR =
ρ(300 K)
ρ(10 K) (1)

As explained below, the RRR is related to the thermal

conductivity via the Weidemann-Franz law [2] [3] as shown

in Eq. (2), where κ is the thermal conductivity, σ is the elec-

trical conductivity, T is the temperature and L is a constant

of proportionality known as the Lorentz number.

κ

σ
= LT (2)

As a metal with a higher RRR has a higher electrical con-

ductivity at low temperatures, so too will it have a higher

thermal conductivity. Therefore manufacturing bulk Nio-

bium cavities from material with a high RRR is desirable

as the increased thermal conductivity will: lead to a cooler

inside surface, increase the Q0 (intrinsic quality factor) for a

given field level and suppress thermal breakdown allowing

higher field levels to be reached [4].

The widespread use of Eq. (1), as measured on a sample,

as a predictor for the heat carrying capacity of a cavity is

based on the implicit assumption that the resistivity within

the material comprising the cavity is, to a good approxi-

mation, homogeneous and identical to that of the sample.

However, there are many processes during the fabrication

and preparation of a cavity which are able to locally affect

the resistivity including: electron beam welding, mechanical

∗ nicholas.shipman@cern.ch

working of the material and diffusion of impurities during

heat treatment [5].

Such processes have the potential to cause the RRR mea-

sured using a four-wire technique [6] to differ for objects of

different geometries. Previously presented measurements

detailed a case where a 650 ◦C heat treatment had a greater

detrimental effect on the bulk RRR of Niobium samples than

on a cavity even though both had been made from the same

sheet of Niobium and undergone the heat treatment in the

same oven at the same time [7].

The measured RRR and heat transport capability of a

cavity may not be affected in the same way by an inhomo-

geneous resistivity. For example, consider a four-wire RRR

measurement of an elliptical cavity with one voltage and

current probe on either side of its equator. If it is the case

that the weld causes an increase in low temperature resis-

tivity in the vicinity of the weld [8] [9], than a weld along

the equator of the cavity would likely cause a greater propor-

tional reduction in the measured RRR, where all the current

must flow across the weld, than on the average heat transport

capability, where the path of heat flow from the inside to the

outside surface largely avoids the weld.

In the method here described, the cavity walls or sample

are modelled as a grid of nodes connected by a network of

resistors as shown in Fig. 1. Following a similar method to

that shown in [10] an expression is obtained for a resistance

defined as:

R
µν

αβ
=

Vα − Vβ

I
(3)

where Vi is the voltage at any node i and I is the magnitude of

current which flows into the network at node µ and out of the

network at node ν. From this expression the RRR of a sample

or cavity that would be measured with a four-wire technique

can be predicted provided the resistivity distribution and

temperature dependence can be modelled. Alternatively the

validity of a proposed resistivity distribution can be tested

by comparison of the measured and calculated RRR.

LATTICE GREEN FUNCTION METHOD

FOR RRR

Kirchoff’s Law states that:

N∑
j=1

′ci j
(
Vi − Vj

)
= Ii (4)
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Figure 1: Modelling of a sample as a network of nodes

connected by resistors.

where Vi and Ii are respectively, at node i: the voltage, and

the current flowing into the network. The prime indicates the

omission of the term j = i in the summation. ci j is defined

as:

ci j =
1

ri j
=

Ai jσi j

li j
(5)

where ri j , Ai j , σi j and li j are respectively: the resistance,

cross sectional area, conductivity and length, of the edge

connecting nodes i and j.

Equation (4) can be written as:

L ®V = ®I (6)

where Ii is the current flowing into the network at node i, Vi

is the voltage at node i, and:

L =

©­­­­«

c1 −c12 · · · −c1N

−c21 c2 · · · −c2N

...
...

. . .
...

−cN1 −cN2 · · · cN

ª®®®®¬
(7)

with:

ci ≡
N∑
j=1

′ci j (8)

L has eigenvectors ®Ψi and eigenvalues λi for i =

1, 2, . . . , N . The components of ®Ψi are Ψiα for α =

1, 2, . . . N . It is easily verified that L has a normalised eigen-

vector ®Ψ1 where:

Ψ1α =
1√
N

∀α (9)

with corresponding eigenvalue λ1 = 0. As:

|L| =
N∏
i=1

λi (10)

for any matrix, |L| = 0, and so it is not possible to find L
−1

in order to directly solve Eq. (6) for ®V . Physically this is

related to the fact that infinitely many solutions for ®V can

be found by adding the same voltage to every node in the

network. This is not a fundamental limitation as it is always

the difference in voltage between two nodes which is of

interest, or identically the voltage of a node once the voltage

of any other node has been assigned. Mathematically the

analysis is continued by considering the matrix L(ǫ) where:

L(ǫ) = L + ǫI (11)

I is the N × N identity matrix and ǫ is some number.

It is clear from Eq. (11) that L(ǫ) has the same eigenvec-

tors as L and that the corresponding eigenvalues λi(ǫ) =
λi + ǫ ∀i. As L is a symmetric matrix it can be diago-

nalised by an orthogonal matrix O whose columns are the

normalised eigenvectors of L:

O
T

LO = D (12)

where D is the diagonal matrix whose elements are:

Di j = δi jλi (13)

with δi j the Dirac delta function. From Eq. (11) and Eq. (12)

it is simple to show that:

O
T

L(ǫ)O = D(ǫ) (14)

where O is the same orthogonal matrix in Eq. (12) explicitly:

Oi j = Ψji (15)

and D(ǫ) is the diagonal matrix with elements:

D(ǫ)i j = δi j(λi + ǫ) (16)

From Eq. (14) the following expression for L
−1 (the

Green’s function) can be found:

L
−1(ǫ) = OD

−1(ǫ)OT (17)

where the elements of D
−1(ǫ) are given explicitly as:

D−1(ǫ)i j = δi j
(

1

λi + ǫ

)
(18)

Therefore from Eqs. (15)-(18) the following expression for

the elements of L
−1(ǫ) can be obtained:

L−1(ǫ)αβ =
N∑
i=1

ΨiαΨiβ

λi + ǫ
(19)

By using Eq. (9), Eq. (19) can also be written as:

L−1(ǫ)αβ =
1

Nǫ
+ gαβ(ǫ) (20)

where:

gαβ(ǫ) =
N∑
i=2

ΨiαΨiβ

λi + ǫ
(21)

In close accordance with Eq. (6) it is now written that:

®V(ǫ) = L
−1(ǫ)®I(ǫ) (22)
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By substitution of Eq. (20) into Eq. (22) the following

explicit equation for the components of ®V(ǫ) is obtained:

®V(ǫ)i =
N∑
j=1

Ij

Nǫ
+

N∑
j=1

gi j(ǫ)Ij (23)

for the case where all the impedances in the network are

purely real (which the preceding mathematics has already

assumed anyhow), we must have that:

N∑
j=1

Ij = 0 (24)

From Eq. (24), Eq. (23) becomes:

®V(ǫ)i =
N∑
j=1

gi j(ǫ)Ij (25)

It is further assumed that all the current flows into the

network at node µ and leaves the network at node ν such

that:

Ii = I(δiµ − δiν) (26)

By taking the limit ǫ → 0, defining gi j = gi j(ǫ = 0), and

substituting in Eq. (26), Eq. (25) becomes:

®Vi = I(giµ − giν) (27)

Finally, by substituting in Eq. (27) the final expression for

R as defined in Eq. (3) becomes:

R
µν

αβ
= gαµ + gβν − gαν − gβµ (28)

LATTICE GREEN FUNCTION METHOD

FOR HEAT CONDUCTIVITY

The method outlined in the previous section is readily

adapted to calculate an absolute thermal resistance Z
µν

αβ
de-

fined as:

Z
µν

αβ
=

Tα − Tβ

Pth

(29)

where Ti is the temperature at node i in the steady state and

Pth is the heat entering the network at node µ and leaving

at node ν per unit time in the steady state.

In effect instead of solving the equation:

JI = −σ∇V (30)

on a network (where JI is the current density) one would

now need to solve the mathematically identical equation:

J = −κ∇T (31)

where J is the heat flux, κ is the thermal conductivity and

T is the temperature. As such the elements ci j which were

defined in Eq. (5) must now be defined as follows:

ci j =
Ai j κi j

li j
(32)

where κi j is the thermal conductivity in the region surround-

ing an edge connecting two nodes (and zero if the nodes are

not connected) Ai j is the cross sectional area associated with

that edge and li j is the length of the edge.

The definitions of ci , L and gαβ remain unchanged and

the expression for Z
µν

αβ
is simply:

Z
µν

αβ
= gαµ + gβν − gαν − gβµ (33)

as before.

In order for Z
µν

αβ
to be of any practical use for predicting

the thermal behaviour of an object, the network model used

to calculate R
µν

αβ
needs to be adapted. This is because the

assumption all the heat flows into the network at a single

node and out of another is unlikely to be realistic. For il-

lustrative purposes one possible adaptation for the case of a

superconducting cavity operating in a liquid helium bath is

briefly described.

First two artificial nodes are added to the network model,

one node (θ) is connected to every ’real’ node on the cavity’s

inner surface whilst the other (φ) is connected to every node

on the cavities outer surface. By choosing cφn ∀ n, where n

is any node on the cavity’s outer surface, such that:

cφn >> ci j ∀ i, j < {θ, φ} (34)

and by a judicious choice of cθm ∀m, where m is any node

on the cavity’s outer surface, and by ensuring also that:

cθm << ci j ∀ i, j < {θ, φ} (35)

the distribution of the power on the cavity surface can be

made to match such a distribution obtained from any rf

simulation software. Also, the temperature on the outer

surface which is in contact with the helium bath will be

uniform. Then Z
θφ
nm can be calculated from Eq. (33)and used

to calculate the temperature at any point on the cavities inner

surface for a given total power dissipation Pth .

SUMMARY AND FUTURE WORK

The methods described in this paper offer a new and pow-

erful tool to predict the effect on cavity performance from

any process during or after fabrication which causes local

variations in the resistivity. However it is reliant on an ac-

curate model of the resistivity distribution. As such work is

under way to better understand the likely resistivity distri-

bution. As part of this effort many new samples are being

fabricated of different geometries, varying surface area to

volume ratios, with different heat treatments and both with

and without welds. The RRR for each of these will be mea-

sured with a four-wire technique to verify and improve the

resistivity models which are being developed.
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