Paper |
Title |
Page |
WEPMK009 |
Status of the ESRF-EBS Magnets |
2648 |
|
- C. Benabderrahmane, J.C. Biasci, J-F. B. Bouteille, J. Chavanne, L. Eybert, L. Goirand, G. Le Bec, L. Lefebvre, S.M. Liuzzo, D. Martin, C. Penel, P. Raimondi, J.-L. Revol, F. Villar, S.M. White
ESRF, Grenoble, France
|
|
|
The ESRF-EBS (Extremely Brilliant Source) is an upgrade project planned at the European Synchrotron Radiation Facility (ESRF) in the period 2015-2022. A new storage ring will be built, aiming to decrease the horizontal emittance and to improve the brilliance and coherence of the X-ray beams. The lattice of the new storage ring relies on magnets with demanding specifications: dipoles with longitudinal gradient (field ranging from 0.17 T up to 0.67 T), strong quadrupoles (up to 90 T/m), combined function dipole-quadrupoles with high gradient (0.57 T and 37 T/m), strong sextupoles and octupoles. The design of these magnets is based on innovative solutions; in particular, the longitudinal gradient dipoles are permanent magnets and the combined dipole-quadrupoles are single-sided devices. The longitudinal gradient dipoles have been assembled and measured in house. The design of the magnets, production status and magnetic measurement results will be presented.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMK009
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THXGBD3 |
Status of the ESRF-Extremely Brilliant Source Project |
2882 |
|
- J.-L. Revol, C. Benabderrahmane, P. Berkvens, J.C. Biasci, J-F. B. Bouteille, T. Brochard, N. Carmignani, J.M. Chaize, J. Chavanne, F. Cianciosi, A. D'Elia, R.D. Dimper, M. Dubrulle, D. Einfeld, F. Ewald, L. Eybert, G. Gautier, L. Goirand, L. Hardy, J. Jacob, B. Joly, M.L. Langlois, G. Le Bec, I. Leconte, S.M. Liuzzo, C. Maccarrone, T.R. Mairs, T. Marchial, H.P. Marques, D. Martin, J.M. Mercier, A. Meunier, M. Morati, J. Pasquaud, T.P. Perron, E. Plouviez, E. Rabeuf, P. Raimondi, P. Renaud, B. Roche, K.B. Scheidt, V. Serrière, P. Van Vaerenbergh, R. Versteegen, S.M. White
ESRF, Grenoble, France
|
|
|
The ESRF - the European Synchrotron Radiation Facility - is a user facility in Grenoble, France, and the source of intense high-energy (6 GeV) X-rays. In 2019, the existing storage ring will be removed and a new lattice will be installed in its place, dramatically reducing the equilibrium horizontal emittance. This 'fourth-generation' synchrotron will produce an X-ray beam 100 times more brilliant and coherent than the ESRF source today. The Extremely Brilliant Source (EBS) project was launched in 2015 and is now well underway, on track for its scheduled completion in 2020. The design is completed, the procurement in full swing, the assembly has started, and critical installation activities are being prepared. The current status, three years into the project, will be revealed, along with the expected performance of the accelerator and the technical challenges involved. This paper will focus on the implementation of the project.
|
|
|
Slides THXGBD3 [13.547 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-THXGBD3
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THPML033 |
Towards a Free Electron Laser Using Laser Plasma Acceleration |
4723 |
|
- A. Loulergue, T. André, I.A. Andriyash, C. Benabderrahmane, P. Berteaud, F. Blache, C. Bourassin-Bouchet, F. Bouvet, F. Briquez, L. Chapuis, M.-E. Couprie, D. Dennetière, Y. Dietrich, J.P. Duval, M. El Ajjouri, T.K. El Ajjouri, A. Ghaith, C. Herbeaux, N. Hubert, M. Khojoyan, C.A. Kitegi, M. Labat, N. Leclercq, A. Lestrade, O. Marcouillé, F. Marteau, P. N'gotta, D. Oumbarek, F. Polack, P. Rommeluère, M. Sebdaoui, K.T. Tavakoli, M. Valléau, J. Vétéran, C. de Oliveira
SOLEIL, Gif-sur-Yvette, France
- S. Bielawski, C. Evain, E. Roussel, C. Szwaj
PhLAM/CERLA, Villeneuve d'Ascq, France
- S. Corde, J. Gautier, J.-P. Goddet, G. Lambert, B. Mahieu, V. Malka, J.P. Rousseau, S. Sebban, K. Ta Phuoc, A. Tafzi, C. Thaury
LOA, Palaiseau, France
- O. S. Kononenko
DESY, Hamburg, Germany
- S. Smartzev
Weizmann Institute of Science, Physics, Rehovot, Israel
|
|
|
Since the laser invention, the advent of X-ray Free Electron Lasers (FEL) half a century later, opens new areas for matter investigation. In parallel, the spectacular development of laser plasma acceleration (LPA) with several GeV beam acceleration in an extremely short distance appears very promising. As a first step, the qualification of the LPA with a FEL application sets a first challenge. Still, energy spread and beam divergence do not meet the state-of-the-art performance of the conventional accelerators and have to be manipulated to fulfill the FEL requirement. We report here on the undulator spontaneous emission measured after a transport manipulation electron beam line, using variable permanent magnet quadrupoles of variable strength for emittance handing and a demixing chicane equipped with a slit for the energy spread. Strategies of control electron beam position and dispersion have been elaborated. The measured undulator radiation provides an insight on the electron beam properties.
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-IPAC2018-THPML033
|
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|