Keyword: cryogenics
Paper Title Other Keywords Page
MOPHA009 Commissioning the Control System for Cryomodule Cryogenics Distribution System in Test Stand 2 controls, cryomodule, PLC, MMI 205
 
  • E. Asensi Conejero, M. Boros, N. Elias, J. Fydrych, W. Hees, P.L. van Velze
    ESS, Lund, Sweden
  • W. Gaj
    IFJ-PAN, Kraków, Poland
 
  The European Spallation Source (ESS) is currently under construction in Lund, Sweden. The superconducting section of the linear accelerator consists of three parts; 26 double-spoke cavities gathered in 13 cryomodules, 36 medium beta elliptical cavities gathered in 9 cryomodules and 84 high beta elliptical cavities gathered in 21 cryomodules. The cryomodules have to be tested in a dedicated test facility before installation in the ESS tunnel, Test Stand 2 is dedicated to the tests of the medium beta and high beta elliptical cryomodules for the ESS linear accelerator. In this paper, the authors present the commissioning of the PLC based control system for the cryogenic circuits in the elliptical cavities cryomodules. These circuits allow the circulation of gas Helium at 4.5 K and liquid Helium at 2 K to cool down the niobium cavities and reach the material superconducting state, as well as to keep a thermal shield with gas Helium at 50 K. Cryogenic valves, heaters and different sort of sensors need to be controlled and monitored to operate this system successfully from a Control Room using dedicated Operator Interfaces developed in CS-Studio and following the EPICS architecture.  
poster icon Poster MOPHA009 [1.369 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA009  
About • paper received ※ 28 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA041 Cause-and-Effect Matrix Specifications for Safety Critical Systems at CERN operation, PLC, controls, SCADA 285
 
  • B. Fernández Adiego, E. Blanco Viñuela, M. Charrondiere, R. Speroni
    CERN, Geneva, Switzerland
  • M. Bonet, H.D. Hamisch, M.H. de Queiroz
    UFSC, Florianópolis, Brazil
 
  One of the most critical phases in the development of a Safety Instrumented System (SIS) is the functional specification of the Safety Instrumented Functions (SIFs). This step is carried out by a multidisciplinary team of process, controls and safety experts. This functional specification must be simple, unambiguous and compact to allow capturing the requirements from the risk analysis, and facilitating the design, implementation and verification of the SIFs. The Cause and Effect Matrix (CEM) formalism provides a visual representation of Boolean expressions. This makes it adequate to specify stateless logic, such as the safety interlock logic of a SIS. At CERN, a methodology based on the CEM has been applied to the development of a SIS for a magnet test bench facility. This paper shows the applicability of this methodology in a real magnet test bench and presents its impact in the different phases of the IEC 61511 safety lifecycle.  
poster icon Poster MOPHA041 [0.751 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA041  
About • paper received ※ 27 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA002 LCLS-II Cryomodule and Cryogenic Distribution Control controls, cryomodule, PLC, cavity 1071
 
  • D.T. Robinson, A.L. Benwell, C. Bianchini, D. Fairley, S.L. Hoobler, K.J. Mattison, J. Nelson, A. Ratti
    SLAC, Menlo Park, California, USA
  • L.E. Farrish, J. Gubeli, C. Hovater, K. Jordan, W. Moore
    JLab, Newport News, Virginia, USA
  • J.A. Kaluzny, A. Martinez
    Fermilab, Batavia, Illinois, USA
 
  The new superconducting Linear Coherent Light Source (LCLS-II) at the SLAC National Accelerator Laboratory will be an upgrade to LCLS, the world’s first hard X-ray free-electron laser. LCLS-II is in an advanced stage of construction with equipment for both Cryoplants as well as more than half of the 37 cryomodules onsite. Jefferson Lab (JLab) is a partner lab responsible for building half of the LCLS-II cryomodules. Hence the Low Energy Recirculation Facility (LERF) at JLab was used to stage and test LCLS-II cryomodules before shipping them to SLAC. LERF was set up to test two cryomodules at a time. LERF used LCLS-II cryogenic controls instrumentation racks, Programmable Logic Controllers (PLC) controls and Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs) with the intention to use the LERF setup to check-out and verify cryogenic controls for LCLS-II. The cryogenic controls first utilized at LERF would then be replicated for controlling all 37 cryomodules via an EPICS user interface. This paper discusses the cryogenic controls currently developed for implementation in the LCLS-II project.  
poster icon Poster WEPHA002 [1.119 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA002  
About • paper received ※ 28 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA049 CERN Neutrino Cryogenic Control System Technology: From the WA105 Test Facility to the NP04 and NP02 Platforms controls, PLC, experiment, operation 1209
 
  • M. Pezzetti, C.F. Fluder, R. Orlandi
    CERN, Geneva, Switzerland
 
  The CERN Neutrino Platform is CERN’s undertaking to foster fundamental research in neutrino physics at particle accelerators worldwide. In this contest CERN has constructed a series of cryogenic test facilities, first of this series is the 5 tons liquid Argon detector named WA105, succeeded by the 800 tons liquid Argon cryostats designated as NP04 and NP02 detectors. The cryogenic control system of these experiments was entirely designed and constructed by CERN to operate 365 days a year in a safe way through all the different phases aimed to cool down and fill the cryostat until reaching nominal stable conditions . This paper describes the process control system design methodology, the off line validation and the operational commissioning including fault scenario handling. A systematic usage of advanced informatics tools, such as CERN/CPC tools, Git and Jenkins, used to ensure a smooth and systematic software development of the process, is presented. Finally, particular attention is given to the adoption of the CERN cryogenic technical standard solutions to enhance reliability, safety, and flexibility of the system working 24 hours a day  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA049  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA050 Status of the Process Control Systems Upgrade for the Cryogenic Installations of the LHC Based ATLAS and CMS Detectors controls, PLC, software, hardware 1214
 
  • C.F. Fluder, M. Pezzetti, A. Tovar González
    CERN, Geneva, Switzerland
  • K.M. Mastyna, P. Peksa, T. Wolak
    AGH, Cracow, Poland
 
  The ATLAS and CMS cryogenic control systems have been operational for more than a decade. Over this period, the number of PLCs faults increased due to equipment ageing, leading to systems failures. Maintenance of the systems started to be problematic due to the unavailability of some PLC hardware components, which had become obsolete. This led to a review of the hardware architecture and its upgrade to the latest technology, ensuring a longer equipment life cycle and facilitating the implementation of modifications to the process logic. The change of the hardware provided an opportunity to upgrade the process control applications using the most recent CERN frameworks and commercial engineering software, improving the in-house software production methods and tools. Integration of all software production tasks and technologies using the Continuous Integration practice allows us to prepare and implement more robust software while reducing the required time and effort. The publication presents the current status of the project, the strategy for hardware migration, enhanced software production methodology as well as the experience already gained from the first implementations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA050  
About • paper received ※ 30 September 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THCPL05 Signal Analysis for Automated Diagnostic Applied to LHC Cryogenics software, Windows, vacuum, controls 1601
 
  • K.O.E. Martensson, B. Bradu, G. Ferlin
    CERN, Geneva, Switzerland
 
  The operation of the LHC at CERN is highly dependent on its associated infrastructure to operate properly, such as its cryogenic system where many conditions must be fulfilled for superconducting magnets and RF cavities. In 2018, the LHC cryogenic system caused 172 hours of accelerator downtime (out of 5760 running hours). Since the cryogenics recovery acts as a time amplifier, it is important to identify not optimized processes and malfunctioning systems at an early stage to anticipate losses of availability. The LHC cryogenic control systems embeds about 60,000 I/O whereof more than 20,000 analog signals which have to be monitored by operators. It is therefore crucial to select only the relevant and necessary information to be presented. This paper presents a signal analysis system created to automatically generate adequate daily reports on potential problems in the LHC cryogenic system which are not covered by conventional alarms, and examples of real issues that have been found and treated during the 2018 physics run. The analysis system, which is written in Python, is generic and can be applied to many different systems.  
slides icon Slides THCPL05 [1.781 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THCPL05  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)