CAUSE-AND-EFFECT MATRIX SPECIFICATIONS FOR SAFETY CRITICAL SYSTEMS AT CERN

B. Fernández*, E. Blanco, M. Charrondiere, R. Speroni, CERN, Geneva, Switzerland
H. Hamisch, M. Bonet, M. H. de Queiroz, Universidade Federal de Santa Catarina, Florianópolis, Brazil

Abstract
One of the most critical phases in the development of a Safety Instrumented System (SIS) is the functional specification of the Safety Instrumented Functions (SIFs). This step is carried out by a multidisciplinary team of process, controls and safety experts. This functional specification must be simple, unambiguous and compact to allow capturing the requirements from the risk analysis, and facilitating the design, implementation and verification of the SIFs. The Cause and Effect Matrix (CEM) formalism provides a visual representation of Boolean expressions. This makes it adequate to specify stateless logic, such as the safety interlock logic of a SIS. At CERN, a methodology based on the CEM has been applied to the development of a SIS for a magnet test bench facility. This paper shows the applicability of this methodology in a real magnet test bench and presents its impact in the different phases of the IEC 61511 safety lifecycle.

INTRODUCTION
The European Organization for Nuclear Research (CERN) operates the largest particle physics laboratory in the world. This research laboratory hosts many critical industrial installations that are necessary for the numerous experiments performed here. Some examples are cryogenics plants, cooling and ventilation processes, powering systems, superconducting magnet test benches and many more. A failure in these industrial installations or in their control systems may have catastrophic consequences, such as enormous economic losses, environmental damages or even human causalities. For that purpose, at CERN, many Safety Instrumented Systems (SISs) have been engineered to mitigate the risks of these industrial processes.

Safety Instrumented Systems
A SIS is a prevention mechanism designed to reduce the probability of occurrence of hazardous events. The IEC 61511 standard [1] provides the so-called safety life cycle, which provides guidelines to develop, maintain and manage a SIS for the process industry. Once the unacceptable risks are identified by the risk analysis, the process and safety experts must specify the necessary Safety Instrumented Functions (SIFs) to reduce the probability of occurrence of these risks. A SIF specification must contain at least the following elements:

* The functionality of the SIF: a precise description of the required SIF logic.
* The target Safety Integrity Level (SIL): a quantitative measure of the risk reduction.
* The operation mode required for the SIF: low, high or continuous demand, depending on the nature of the process and risk.

Nowadays, Safety PLCs (Programmable Logic Controllers) are widely used in SISs and the functionality of the SIFs is implemented in the PLC programs.

The specification method to express the functionality of a SIF must be simple, unambiguous and compact to allow capturing the requirements from the risk analysis, and facilitate the design and implementation of the PLC program. There are many specification methods to express unambiguously the functionality of a SIF, for example, a textual boolean expression, a logic diagram or a Cause and Effect Matrix (CEM).

Objectives
This paper presents a real case study at CERN of the usage of a CEM-based specification to express the interlock logic of a magnet test bench installation. The benefits and limitations of this approach in comparison with the previously adopted methods are also summarized.

The paper is structured as follows: first, the paper introduces the basic concepts and adopted CEM semantics for this project. Second, the case study is described, including the process description and an example of the CEM usage. Finally, the analysis and conclusions of this study are presented.

CAUSE AND EFFECT MATRIX
Cause and Effect Matrix is a compact and intuitive graphical representation of boolean expressions. This makes it adequate to represent stateless logic, where a given output depends only on a combination of the current input signals. CEM is generally well accepted to specify interlock logic in the process and manufacturing industries. However there are many variants of CEMs and the companies adopt the semantics that best adapt to their processes and engineering practices. Some PLC providers have included the CEM in their engineering tools. This is the case of Siemens Industrial Automation, which provides the SIMATIC Safety Matrix [2]. This tool allows the use of CEM as a specification mechanism but imposes a specific software architecture,
their own engineering tools, SCADA (Supervisory Control And Data Acquisition), etc. The International Electrotechnic Commission published in 2018 the IEC 62881 standard [3], describing a widely accepted semantics of a CEM.

In this project, the CEM has been applied to specify the interlock logic of a magnet test bench installation. The CEM semantics have been defined by adapting the specific standards adopted by the oil and gas industry [4] to the engineering practices of CERN.

Semantics

The matrix consists of rows of signals (the causes) and columns of signals (the effects), as seen in Table 1. The intersection (cell) between a cause and an effect denotes how the cause influences the effect, according to the following basic rules:

- **X**: the cause, when active, triggers the effect (OR logic);
- **N**: the cause, when inactive, triggers the effect (OR NOT logic);
- **(N)Ai**: the effect is triggered when all the causes with the Ai entry (where i = 1, 2, ...) are simultaneously active, or inactive if the prefix N is present (AND logic);
- **TONx**: the cause, if active for more than x seconds, triggers effect (IEC 61131-3 [5] TON logic);
- **TOFx**: the cause, when active, triggers the effect and the effect remains active for x seconds after the cause becomes inactive (IEC 61131-3 [5] TOF logic);
- Multiple entries in a single column, or separated by "," in a single cell, are combined with OR logic;
- The same effect may appear in multiple matrices, the resulting expression for this effect is an OR logic between the activations of each matrix.

Table 1 illustrates an example of a couple of timed boolean expressions (1) in this CEM notation.

\[
\begin{align*}
Q01 &= I01 \lor TON(I02, 20s) \lor (\neg I03 \land I04) \\
Q02 &= I02 \land (I03 \lor \neg I04)
\end{align*}
\]

Table 1: CEM Example

<table>
<thead>
<tr>
<th>Cause</th>
<th>Effect</th>
<th>Q01</th>
<th>Q02</th>
</tr>
</thead>
<tbody>
<tr>
<td>I01</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I02</td>
<td>TON20</td>
<td>A1,A2</td>
<td></td>
</tr>
<tr>
<td>I03</td>
<td>NA1</td>
<td>A1</td>
<td></td>
</tr>
<tr>
<td>I04</td>
<td>A1</td>
<td>NA2</td>
<td></td>
</tr>
</tbody>
</table>

To support the described semantics and apply them to real cases, a Python-based prototype tool has been developed at CERN: *SISpec*. The tool provides a user-friendly graphical interface to build the CEMs and provides syntax and semantic validation to avoid specification errors. In addition, the CEM can be exported to different formats (e.g. *xlsx* files for visualization with Microsoft Excel) and test and verification cases can be automatically generated.

CASE STUDY

This section presents a CERN case study of the applicability of the CEM formalism to specify the functional logic of a SIS and of an interlock-based control system.

Process Description

The selected process is the so-called *ClusterG* magnet test bench. This facility is mainly designed to test the superconducting magnet prototypes for the High Luminosity LHC project [6], protection diodes, current leads and high temperature superconducting (HTS) future generation magnets. *ClusterG* consists of five test benches, where magnets under test are installed, and four different power converters, providing the required current to the benches. Moreover, four mechanical commutators connect the power converters and the benches. To optimize the operation time of the facility, two benches can be powered at the same time.

The process instrumentation consists of: (1) forty-two analogue input signals, mainly analogue sensors such as the current lead temperatures and voltages; (2) one hundred and thirty digital input signals, including digital sensors such as temperature and flow switches of the water cooled cables, the commutators feedbacks, a few signals indicating the data acquisition and cryogenic statuses, etc.; (3) fifty-six output signals, consisting in digital relays to operate the quench protection matrix, the power converters, etc.

A simplified schema of the process is shown in Figure 1. The highlighted elements (e.g. TSH1, FSL1) are used later in the paper to present the specification examples.

The process experts provided the specification to develop the control system to operate this facility. In addition, a risk analysis based on the Failure Mode and Effect Analysis (FMEA) of the process was performed and several hazards of electrical and cryogenic nature to the workers and the installation itself were detected. As a consequence a SIS was designed to mitigate these risks, following the IEC 61511 directives.

Operational Requirements

The operational requirements for this installation were expressed in a formalism designed by the process experts, based on a table where the logic to operate the test bench was included. The logic of the table connects the SCADA commands, the test types to be performed (one per test bench), the input signals (sensors) and the output signals (actuators).

In the simplified example shown in Table 2, for the Test_A, the operator selects the power converter to be used in this test (e.g. *PC1*), and the control system checks the correct status of the process inputs for the specific test, in this case *CRYO_A* and *DAQ_A* (status of the cryogenics and data acquisition systems). If the conditions are met for the specific test, the control system gives the authorisation to the power...
converters to power the test bench. The real specification
table for this project has around two hundred and fifty rows
and eight columns.

In the cells of this table, selectors (e.g. PC1), boolean
values (e.g. 1), empty cells and plain text (e.g. "if PC1,
1 when all conditions fulfilled") are mixed to express the
desired logic. However while this table is convenient for the
process experts, it is an ambiguous requirements description
and makes the translation to PLC code open to interpretation
and error prone. Moreover, the lack of formal semantics
makes impossible the generation of test or verification cases.

Safety Requirements

The outcome of the risk assessment was the specification
of 28 SIFs to be included in a SIS. Table 3 shows a simplified
example of a particular SIF (SIF1), where a reference to the
risk analysis, the functionality and its formalization, the
associated target SIL and the operation mode (low, high or
continuous demand) are included.

This specification is unambiguous but written in a Mi-
crosoft Word document, which prevents the automatic gen-
eration of test and verification cases. In addition, when the
number of variables to be included in the boolean formula is
significant, or when the logic is complex with many paren-
thesis and boolean operators, a textual representation may
be very complex and it might be difficult to detect human
mistakes during the specification.

New CEM-based Specification

The ambiguity of the operational requirements and the
lack of tools and proper visualization for the safety require-
ments were the main motivation to analyse the potential
benefits that the CEM could bring to this project.

However, just by using the CEM method, the specification
of the project would still be rather complex. The significant
number of sensors, actuators and test types obliged us to
split the specification into several CEMs. Otherwise the
result would have been a CEM with hundreds of causes and
dozens of effects.

The strategy adopted to express the operational and safety
specification is presented in Table 4. It separates the opera-
tional and safety requirements and each of them is divided in
two levels, top and bottom, in order to split the specification
in smaller and simpler units, as follows:

- The bottom operational CEMs have process sensors
 and SCADA commands (inputs) as causes and test types
 (operational functions) as effects;
- The top operational CEMs have test types (operational
 functions) and SCADA commands (inputs) as causes
 and actuators as effects.
- The bottom safety CEMs have safety sensors (safety
 inputs) as causes and SIFs as effects;
- The top safety CEMs have SIFs as causes and safety
 actuators as effects.

The Tables 5a, 5b, 5c and 5d show the previously presented
 specifications expressed in the CEMs. The SEL_PC vari-
able is discretized in several Boolean variables for the Top
 Operational CEM (only two of them are shown in Tables 5a).
The effects of the bottom CEMs are the causes of the top
 CEMs. Finally, if an actuator is common for the operational
 and the safety requirements, e.g. PC1, the effect of the Top
 Operational CEM is a cause in the Top Safety CEM (see
 PC1_OPER and PC1_PP in Tables 5a and 5b).
Table 2: Simplified Example of the Operational Requirements

<table>
<thead>
<tr>
<th>Condition</th>
<th>TEST_A</th>
<th>TEST_B</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCADA</td>
<td>SEL_PC</td>
<td>PC1 / PC3 / PC4</td>
</tr>
<tr>
<td>Process</td>
<td>CRYO_A</td>
<td>1</td>
</tr>
<tr>
<td>Sensors</td>
<td>CRYO_B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DAQ_A</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>DAQ_B</td>
<td></td>
</tr>
<tr>
<td>Process</td>
<td>PC1_OPER</td>
<td>if PC1, 1 when all conditions fulfilled</td>
</tr>
<tr>
<td>Actuators</td>
<td>PC2_OPER</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Simplified SIF Specification

<table>
<thead>
<tr>
<th>Reference</th>
<th>SIF1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related risk</td>
<td>Risk analysis reference 1</td>
</tr>
<tr>
<td>Functionality</td>
<td>Shutdown the power converter if the corresponding temperature of the water-cooled cable is high (FALSE) or the water flow is low (FALSE)</td>
</tr>
<tr>
<td>Formalized functionality</td>
<td>If ((COM_1 \land CON_A \land (\lnot TSH1 \lor TSH2 \lor FSL1 \lor FSL2))) (\Rightarrow PC1_PP = 0)</td>
</tr>
<tr>
<td>Safety Level</td>
<td>SIL2</td>
</tr>
<tr>
<td>Operation mode</td>
<td>Low demand</td>
</tr>
</tbody>
</table>

Table 4: Selected Strategy to Split the CEM Specification

<table>
<thead>
<tr>
<th>Top Operational CEMs</th>
<th>Top Safety CEMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects: actuators</td>
<td>Effects: safety actuators</td>
</tr>
<tr>
<td>Causes: operational functions</td>
<td>Causes: SIFs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bottom Operational CEMs</th>
<th>Bottom Safety CEMs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effects: operational functions</td>
<td>Effects: SIFs</td>
</tr>
<tr>
<td>Causes: inputs</td>
<td>Causes: safety inputs</td>
</tr>
</tbody>
</table>

PLC Program Implementation

Both the operational and safety requirements have been implemented in a S7-317F Siemens Safety PLC. The operational requirements have been implemented using the UNICOS framework [7] and the safety requirements using the Distributed Safety Library [8] and the LADDER programming language. Figure 2 shows a part of the PLC program corresponding to the Tables 5b and 5d, containing the logic for the SIF1 and the logic for the actuator, the power permit of the power converter 1 (PC1_PP). As it can be observed, the implementation of the PLC program out of the CEMs is straightforward and a well-defined program architecture is established.

Verification and Test Case Generation

CEM facilitates the verification and testing activities against the PLC programs thanks to its formalized semantics. In this project, both verification and test cases were automatically generated by the SiSpec tool from the CEMs. The verification cases were executed by the PLCverif tool [9] (PLC formal verification tool developed at CERN) and the test cases were generated based on the algorithms presented in [4] and executed in a test platform.

ANALYSIS

This section presents the benefits and limitations of the usage of CEM to the ClusterG project. Regarding the benefits and improvements we can emphasize the following ones:

- CEM provides a fairly simple and graphical mechanism for the process and safety experts to express the desired logic;
- The unambiguous specification simplifies the communication between the control, process and safety experts;
- The translation of CEM logic to the PLC program is trivial and automatic code generation is possible;
The automatic generation of test and verification cases is possible and particularly important when code generation is not an option, for example in the case of Siemens safety PLC programs;

- The presented specification strategy and the usage of CEM improved significantly the maintainability of the project by having a well-defined program architecture and the traceability between the PLC program, the CEM specification and the risk assessment.

There are certain limitations or drawbacks of this method:

- CEM is not appropriate to all types of processes. While CEM is convenient for stateless interlock logic, other methods should be applied for different processes;
- Certain boolean logic may be difficult to express in one single CEM and thus auxiliary CEMs may have to be included. This was the case of the SIF2 for ClusterG.

CONCLUSIONS

This paper presents a CERN case study of the usage of a CEM-based specification for the interlock logic of a control system and a SIS. The paper analyses this new approach by presenting the main benefits and limitations in comparison with the previous specification methods.

The results are positive, especially in terms of removing the ambiguity of previous specification methods and adding capabilities such test and verification cases generation. The future of this project will be focussed in two directions. First, the extension of the semantics to different activation logics that are common in our systems, for example rising edges, pulses, etc. Second, the improvement of our CEM tool, SISpec, in terms of usability, new features such as code generation and integration in the development cycle of interlock-based control systems and SISs.
REFERENCES

ICALEPCS2019, New York, NY, USA JACoW Publishing
doi:10.18429/JACoW-ICALEPCS2019-MOPHA041

MOPHA041

Content from this work may be used under the terms of the CC BY 3.0 licence (© 2019). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.