Author: Woods, K.
Paper Title Page
MOCPL01 IBEX: Beamline Control at ISIS Pulsed Neutron and Muon Source 59
 
  • K.V.L. Baker, F.A. Akeroyd, D.P. Keymer, T. Löhnert, C. Moreton-Smith, D.E. Oram
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.R. Holt, T.A. Willemsen, K. Woods
    Tessella, Abingdon, United Kingdom
 
  For most of its over 30 years of operation the ISIS Neutron and Muon Source has been using bespoke control software on its beamlines. In the last few years, we have been converting the beamline control software to IBEX*, which is based on the Open Source EPICS toolkit**. More than half the instruments at ISIS are now converted. IBEX must be robust and flexible enough to allow instrument scientists to perform the many experiments they can conceive of. Using EPICS as a base, we have built Python services and scripting support as well as developing an Eclipse/RCP GUI based on Control System Studio***. We use an Agile based development methodology with heavy use of automated testing and device emulators. As we move to the final implementation stage, we are handling new instrument challenges (such as reflectometry) and providing new functionality (live neutron data view, script generator and server). This presentation will cover an overview of the IBEX architecture, our development practices, what is currently in progress, and our future plans.
*J. Phys. Conf. Ser. 1021 (2018) 012019
**https://epics-controls.org/
***http://controlsystemstudio.org/
 
slides icon Slides MOCPL01 [5.325 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL01  
About • paper received ※ 27 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOMPR007 Scalable High Demand Analytics Environments with Heterogeneous Clouds 171
MOPHA161   use link to see paper's listing under its alternate paper code  
 
  • K. Woods, R.J. Clegg, R. Millward
    Tessella, Abingdon, United Kingdom
  • F. Barnsely, C. Jones
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: UK Research and Innovation - Science & Technology Facilities Council (UK SBS IT18160)
The Ada Lovelace Centre (ALC) at STFC provides on-demand, data analysis, interpretation and analytics services to scientists using UK research facilities. ALC and Tessella have built software systems to scale analysis environments to handle peaks and troughs in demand as well as to reduce latency by provision environments closer to scientists around the world. The systems can automatically provision infrastructure and supporting systems within compute resources around the world and in different cloud types (including commercial providers). The system then uses analytics to dynamically provision and configure virtual machines in various locations ahead of demand so that users experience as little delay as possible. In this poster, we report on the architecture and complex software engineering used to automatically scale analysis environments to heterogeneous clouds, make them secure and easy to use. We then discuss how analytics was used to create intelligent systems in order to allow a relatively small team to focus on innovation rather than operations.
 
poster icon Poster MOMPR007 [1.650 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOMPR007  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA160 Enabling Data Analytics as a Service for Large Scale Facilities 614
 
  • K. Woods, R.J. Clegg, N.S. Cook, R. Millward
    Tessella, Abingdon, United Kingdom
  • F. Barnsely, C. Jones
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: UK Research and Innovation - Science & Technology Facilities Council (UK SBS IT18160)
The Ada Lovelace Centre (ALC) at STFC is an integrated, cross-disciplinary data intensive science centre, for better exploitation of research carried out at large scale UK Facilities including the Diamond Light Source, the ISIS Neutron and Muon Facility, the Central Laser Facility and the Culham Centre for Fusion Energy. ALC will provide on-demand, data analysis, interpretation and analytics services to worldwide users of these research facilities. Using open-source components, ALC and Tessella have together created a software infrastructure to support the delivery of that vision. The infrastructure comprises a Virtual Machine Manager, for managing pools of VMs across distributed compute clusters; components for automated provisioning of data analytics environments across heterogeneous clouds; a Data Movement System, to efficiently transfer large datasets; a Kubernetes cluster to manage on demand submission of Spark jobs. In this paper, we discuss the challenges of creating an infrastructure to meet the differing analytics needs of multiple facilities and report the architecture and design of the infrastructure that enables Data Analytics as a Service.
 
poster icon Poster MOPHA160 [1.665 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA160  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA090 Testing Tools for the IBEX Control System 1295
 
  • T. Löhnert, F.A. Akeroyd, K.V.L. Baker, D.P. Keymer, A.J. Long, C. Moreton-Smith, D.E. Oram
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.R. Holt, T.A. Willemsen, K. Woods
    Tessella, Abingdon, United Kingdom
 
  At the ISIS Neutron and Muon Source, we are in the process of upgrading from the LabVIEW-based SECI instrument control system to the new IBEX control system* based on EPICS**. It is crucial to the running of experiments that IBEX has a high uptime and few bugs. However, it is often not possible to test the system live on an instrument prior to an experiment and thus we must be sure that it is ready to go as soon as we have users. To test that we are correctly communicating with hardware we have built a framework to automate testing of EPICS IOCs using device emulators created using the LeWIS*** Python package. This lets us test that new drivers are functionally the same as those under SECI. To ensure that the full instrument control system stack is working as intended we are also using the Squish testing tool****. Whilst this is used by industry as a GUI focused tool we have used it in conjugation with a fully simulated IBEX installation to create system tests, letting us directly simulate the interactions a user has with IBEX and validate its behavior. This poster will present how using these tools has made IBEX a more robust system.
*https://iopscience.iop.org/article/10.1088/1742-6596/1021/1/012019/pdf
**https://epics-controls.org/
***https://lewis.readthedocs.io/en/latest/
****https://www.froglogic.com/squish/
 
poster icon Poster WEPHA090 [0.657 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA090  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)