Author: Tao, F.
Paper Title Page
MOPHA066 Electronics for LCLS-II Beam Containment System Shut-off 366
MOPHA065   use link to see paper's listing under its alternate paper code  
 
  • R.A. Kadyrov, D.G. Brown, E.P. Chin, C.I. Clarke, M. Petree, E. Rodriguez, F. Tao
    SLAC, Menlo Park, California, USA
 
  LCLS-II is a new FEL which is under construction at SLAC National Accelerator Laboratory. Its superconducting electron linac is able to produce up to 1.2 MW of beam power. Beam Containment System (BCS) is employed to limit the beam power and prevent excessive radiation in case of electron beam loss or FEL breach. Fast and slow shut-off paths are designed for devices with different response requirements. The system is required to shut-off the beam within 200 µs for some of the fast sensors. Fast path is based on custom electronic designs, and slow path leverages industrial safety-rated PLC hardware. The system spans for 4 km of LCLS-II and combines inputs from about 150 sensors of different complexity. Architecture is based on multiple levels starting with summing sensor inputs locally and to converting them into permits for the shut-off devices. Each level is implemented redundantly. Automated test and manual tests at all levels are implemented in the system. System architecture, electronics design and cable plant challenges are presented below.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA066  
About • paper received ※ 27 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA141 Dynamic System Reliability Modelling of SLAC’s Radiation Safety Systems 558
 
  • F. Tao, K.W. Belt
    SLAC, Menlo Park, California, USA
 
  When the LCLS-II project is complete, there will be three major Department of Energy (DOE) beam programs occupying the same 2-mile long accelerator tunnel, e.g. LCLS, LCLS-II and FACET-II. In addition to the geographical overlap, the number of beam loss monitors of all types has been also significantly expanded to detect power beam loss from all sources. All these factors contribute to highly complex Radiation Safety Systems (RSS) at SLAC. As RSS are subject to rigorous configuration control, and their outputs are permits directly related to beam production, even small faults can cause a long down time. As all beam programs at SLAC have the 95% beam availability target, the complex RSS’s contribution to overall beam availability and maintainability is an important subject worth detailed analysis. In this paper, we apply the dynamic system reliability engineering techniques to create the RSS reliability model for all three beam programs. Both qualitative and semi-quantitative approaches are used to identify the most critical common causes, the most vulnerable subsystem as well as the areas that require future design improvement for better maintainability.  
poster icon Poster MOPHA141 [0.863 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA141  
About • paper received ※ 01 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA142 FACET-II Radiation Safety Systems Development 562
 
  • F. Tao, B.M. Bennett, N. Lipkowitz
    SLAC, Menlo Park, California, USA
 
  Facility for Advanced Accelerator Experimental Tests (FACET)-II is an upgrade of the FACET. It uses the middle third of SLAC’s 2-mile long linear accelerator to accelerate the electron beam to 10 GeV, with positron beam to be added in the Stage 2 of the project. Once the project completes in late 2019, it will be operated as a Department of Energy (DOE) user facilities for advanced accelerator science studies. In this paper, we will describe the Radiation Safety Systems (RSS) design and implementation for FACET-II project. RSS include Personnel Protection System (PPS) and Beam Containment System (BCS). Though both systems are safety critical, different technologies are used to implement safety functions. PPS uses Siemens PLC as the backbone for control but legacy CAMAC for data acquisition, while BCS develops customized electronics for faster response to protect safety devices from radiation induced damage.  
poster icon Poster MOPHA142 [1.284 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA142  
About • paper received ※ 01 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THCPR03 A Safety Rated FPGA Framework for Fast Safety Systems 1626
 
  • F. Tao, B.M. Bennett, D.G. Brown, J. Jones, M.W. Stettler
    SLAC, Menlo Park, California, USA
 
  In this paper, we will introduce a generic safety-rated FPGA design template. FMEDA analysis, hardware reliability modeling, firmware development, verification and validation will be described in details to demonstrate the IEC 61508 compliant development process. In this dual redundant design, each chain consists a FPGA chip from different manufacturers to minimize the potential common cause failures. Cross checks between FPGAs and end-to-end self-checks are performed to increase the diagnostic coverage and improve the reliability. Based on this safety FPGA template, an Average Current Monitor (ACM) system is developed at SLAC with the addition of a safety PLC for diagnostics and a HMI for user interface. The overall system is deployed as part of Beam Containment System (BCS) to limit the beam current with the target Safety Integrity Level (SIL) 2.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THCPR03  
About • paper received ※ 01 October 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)