Paper |
Title |
Page |
MOPHA132 |
Control System Integration of MAX IV Insertion Devices |
525 |
|
- J. Lidón-Simon, N.S. Al-Habib, H.Y. Al-Sallami, A. Dupre, V.H. Hardion, M. Lindberg, P. Sjöblom, A. Thiel, G. Todorescu
MAX IV Laboratory, Lund University, Lund, Sweden
|
|
|
During the last 2.5 years, MAX IV have installed and commissioned in total 15 insertion devices out of which 6 are new in vacuum undulators, 1 in vacuum wiggler, and 7 in-house developed and manufactured Apple II elliptical polarized undulators. From the old lab, MAXLAB, 1 PU is also reused. Looking forward, 3 additional insertion devices will be installed shortly. As MAX IV only has one Control and IT group, the same concept of machine and beamline installation have been applied also to the insertion devices, i.e. Sardana, Tango, PLC, and IcePAP integration. This has made a seamless integration possible to the rest of the facility in terms of user interfaces, alarm handling, archiving of status, and also future maintenance support.
|
|
|
Poster MOPHA132 [4.755 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA132
|
|
About • |
paper received ※ 30 September 2019 paper accepted ※ 11 October 2019 issue date ※ 30 August 2020 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
MOPHA133 |
Stable Operation of the MAX IV Laboratory Synchrotron Facility |
530 |
|
- P. Sjöblom, A. Amjad, P.J. Bell, D.A. Erb, A. Freitas, V.H. Hardion, J.M. Klingberg, V. Martos, A. Milan-Otero, S. Padmanabhan, H. Petri, J.T.K. Rosenqvist, D.P. Spruce
MAX IV Laboratory, Lund University, Lund, Sweden
- A. Nardella
ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
|
|
|
MAX IV Laboratory, inaugurated in June 2016, has for the last 8 months accepted synchrotron users on three beamlines, NanoMAX, BioMAX and Hippie, while simultaneously pushing towards bringing more beamlines into the commissioning and user phases. As evidence of this, the last call issued addressed 10 beamlines. As of summer 2019, MAX IV has reached a point where 11 beamlines simultaneously have shutters open and are thus receiving light under stable operation. With 16 beamlines funded, the number of beamlines will grow over the coming years. The Controls and IT group has performed numerous beamline system installations such as a sample changer at BioMAX, Dectris detector at Nanomax, and End Station at Hippie. It has additionally developed processes, such as automated IT infrastructure with a view to accepting users. We foresee a focus on end stations and detectors, as well as data storage, data handling and scientific software. As an example, a project entitled "DataStaMP" has been recently funded aiming to increase the data and metadata storage and management system in order to accommodate the ever increasing demand for storage and access.
|
|
|
Poster MOPHA133 [0.782 MB]
|
|
DOI • |
reference for this paper
※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA133
|
|
About • |
paper received ※ 30 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 |
|
Export • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|