Paper | Title | Page |
---|---|---|
TUBPL02 | Enabling Open Science for Photon and Neutron Sources | 694 |
|
||
Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 823852 Photon and Neutron sources are producing more and more petabytes of scientific data each year. At the same time scientific publishing is evolving to make scientific data part of publications. The Photon and Neutron Open Science Cloud (PaNOSC*) project is a EU financed project to provide scientific data management for enabling Open Science. Data will be managed according to the FAIR principles. This means data will be curated and made available under an Open Data policy, findable, interoperable and reusable. This paper will describe how the European photon and neutron sources on the ESFRI** roadmap envision PaNOSC as part of the European Open Science Cloud***. The paper will address the issues of data policy, metadata, data curation, long term archiving and data sharing in the context of the latest developments in these areas. *https://panosc.eu **https://www.esfri.eu/ **https://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud |
||
![]() |
Slides TUBPL02 [14.942 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUBPL02 | |
About • | paper received ※ 30 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEBPP01 | Control System Development and Integration at ELI-ALPS | 880 |
|
||
Funding: ELI-ALPS is supported by the European Union and cofinanced by the European Regional Development Fund (GOP-1.1.1-12/B-2012-000, GINOP-2.3.6-15-2015-00001) ELI-ALPS will be the first large-scale attosecond facility accessible to the international scientific community and its user groups. Control system development has three major directions: vacuum control systems, optical control systems, as well as the integrated control, monitoring and data acquisition systems. The development of the systems has asked for different levels of integration. In certain cases low-level devices are integrated (e.g. vacuum valves), while in other cases complete systems are integrated (e.g. the Tango interface of a laser system). This heterogeneous environment is managed through the elaboration of a common and general architecture. Most of the hardware elements are connected to PLCs (direct control level), which are responsible for the low-level operation of devices, including machine protection functions, and data transfer to the supervisory control level (CLIs, GUIs). Certain hardware elements are connected to the supervisory layer (cameras), as well as the Tango interface of the laser systems. This layer handles also data acquisition with a special focus on the metadata catalogue. |
||
![]() |
Slides WEBPP01 [2.684 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEBPP01 | |
About • | paper received ※ 01 October 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPHA052 | Engineering Support Activities at ELI-ALPS Through a Systems Engineering Perspective | 1219 |
|
||
Funding: ELI-ALPS is supported by the European Union and cofinanced by the European Regional Development Fund (GOP-1.1.1-12/B-2012-000, GINOP-2.3.6-15-2015-00001). ELI-ALPS will be the first large-scale attosecond facility accessible to the international scientific community and its user groups. The core business of ELI-ALPS is to generate attosecond pulses and provide these to the prospective users. In order to reach this ultimate goal, one key support area, the engineering development of complex systems as well as the engineering custom design service, has been systematically elaborated based on the standards, recent results, trends and best practices of systems engineering. It covers the boundaries towards all related support areas, from building operation and maintenance, to the custom manufacturing provided by the workshops, with the intention to make the model as well as the daily work as comprehensive and consistent as possible. Different tools have been evaluated and applied through the years, however, a key lessons learned is that some of the most important tools are teamwork, personal communication and constructive conflicts. |
||
![]() |
Poster WEPHA052 [1.119 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA052 | |
About • | paper received ※ 01 October 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |