Author: Fernandez Adiego, B.    [Fernández Adiego, B.]
Paper Title Page
MOPHA041 Cause-and-Effect Matrix Specifications for Safety Critical Systems at CERN 285
 
  • B. Fernández Adiego, E. Blanco Viñuela, M. Charrondiere, R. Speroni
    CERN, Geneva, Switzerland
  • M. Bonet, H.D. Hamisch, M.H. de Queiroz
    UFSC, Florianópolis, Brazil
 
  One of the most critical phases in the development of a Safety Instrumented System (SIS) is the functional specification of the Safety Instrumented Functions (SIFs). This step is carried out by a multidisciplinary team of process, controls and safety experts. This functional specification must be simple, unambiguous and compact to allow capturing the requirements from the risk analysis, and facilitating the design, implementation and verification of the SIFs. The Cause and Effect Matrix (CEM) formalism provides a visual representation of Boolean expressions. This makes it adequate to specify stateless logic, such as the safety interlock logic of a SIS. At CERN, a methodology based on the CEM has been applied to the development of a SIS for a magnet test bench facility. This paper shows the applicability of this methodology in a real magnet test bench and presents its impact in the different phases of the IEC 61511 safety lifecycle.  
poster icon Poster MOPHA041 [0.751 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA041  
About • paper received ※ 27 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA078 Renovation of the SPS Personnel Protection System: A Configurable Approach 395
 
  • T. Ladzinski, B. Fernández Adiego, F. Havart
    CERN, Meyrin, Switzerland
 
  The renovation of the SPS Personnel Protection System (PPS) comprises the installation of industrial access control solutions and the implementation of a new safety instrumented system tailored to the particular needs of the accelerator. The SPS has been a working horse of the CERN accelerator complex for many decades and its configuration has changed through the many years of operation. The classic solutions for safety systems design, used in the LHC and PS machines, have not been judged adequate for this accelerator undergoing perpetual changes, composed of many sites forming several safety chains. In order to avoid expensive software modifications, each time the accelerator configuration evolves, a configurable safety software design was proposed. This paper presents the hardware architecture of the PLC-based SPS PPS and the configurable software architecture proposed. It further reports on the testing and formal verification activities performed to validate the safety software and discusses the pros and cons of the configurable approach.  
poster icon Poster MOPHA078 [2.063 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA078  
About • paper received ※ 29 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)