Keyword: cathode
Paper Title Other Keywords Page
MOBO01 Overview of the Beam Instrumentation and Commissioning Results from the BNL Low Energy RHIC Electron Cooling Facility electron, gun, laser, MMI 14
 
  • T.A. Miller, Z. Altinbas, D. Bruno, J.C. Brutus, M.R. Costanzo, L. DeSanto, C.M. Degen, K.A. Drees, A.V. Fedotov, W. Fischer, J.M. Fite, D.M. Gassner, X. Gu, J. Hock, R.L. Hulsart, P. Inacker, J.P. Jamilkowski, D. Kayran, J. Kewisch, C. Liu, K. Mernick, R.J. Michnoff, M.G. Minty, S.K. Nayak, L.K. Nguyen, P. Oddo, R.H. Olsen, M.C. Paniccia, W.E. Pekrul, I. Pinayev, V. Ptitsyn, V. Schoefer, S. Seletskiy, H. Song, A. Sukhanov, P. Thieberger, J.E. Tuozzolo, D. Weiss
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Con-tract No. DE-AC02-98CH10886 with the U.S. Department of Energy
The Low Energy RHIC Electron Cooling (LEReC) facility at BNL demonstrated, for the first time, cooling of ion beams using a bunched electron beam from an SRF accelerating cavity and photoinjector. LEReC is planned to be operational to improve the luminosity of the Beam Energy Scan II physics program in RHIC in the following two years. In order to establish cooling of the RHIC Au ion beam using a 20 mA, 1.6 MeV bunched electron beam; absolute energy, angular and energy spread, trajectory and beam size were precisely matched. A suite of instrumentation was commissioned that includes a variety of current transformers, capacitive pick-up for gun high voltage ripple monitor, BPMs, transverse and longitudinal profile monitors, multi-slit and single-slit scanning emittance stations, time-of-flight and magnetic field related energy measurements, beam halo & loss monitors and recombination monitors. The commissioning results and performance of these systems are described, including the latest design efforts of high-power electron beam transverse profile monitoring using a fast wire scanner, residual gas beam induced fluorescence monitor, and Boron Nitride NanoTube (BNNT) screen monitor
 
slides icon Slides MOBO01 [17.119 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-MOBO01  
About • paper received ※ 05 September 2019       paper accepted ※ 11 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPP013 Slit-Based Slice Emittance Measurements Optimization at PITZ emittance, quadrupole, electron, laser 318
 
  • R. Niemczyk, P. Boonpornprasert, Y. Chen, J.D. Good, M. Groß, H. Huck, I.I. Isaev, C. Koschitzki, M. Krasilnikov, S. Lal, X. Li, O. Lishilin, G. Loisch, D. Melkumyan, A. Oppelt, H.J. Qian, H. Shaker, G. Shu, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • W. Hillert
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
 
  At the Photo Injector Test Facility at DESY in Zeuthen (PITZ) high-brightness electron sources are optimized for use at the X-ray free-electron lasers FLASH and European XFEL. Transverse projected emittance measurements are carried out by a single-slit scan technique in order to suppress space charge effects at an energy of ~20 MeV. Previous slice emittance measurements, which employed the emittance measurement in conjunction with a transverse deflecting structure, suffer from limited time resolution and low signal-to-noise ratio (SNR) due to a long drift space from the mask to the observation screen. Recent experimental studies at PITZ show improvement of the temporal resolution and SNR by utilizing quadrupole magnets between the mask and the screen. The measurement setup is described and first results are shown.  
poster icon Poster TUPP013 [1.121 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IBIC2019-TUPP013  
About • paper received ※ 26 August 2019       paper accepted ※ 09 September 2019       issue date ※ 10 November 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)