TUCOZBS —  WG4: Superconducting RF   (17-Sep-19   16:00—18:00)
Chair: H. Sakai, KEK, Ibaraki, Japan
Paper Title Page
TUCOZBS02 A Ferroelectric Fast Reactive Tuner (FE-FRT) to Combat Microphonics 42
 
  • N.C. Shipman, J. Bastard, M.R. Coly, F. Gerigk, A. Macphersonpresenter, N. Stapley
    CERN, Geneva, Switzerland
  • I. Ben-Zvi
    BNL, Upton, New York, USA
  • G. Burt, A. Castilla
    Lancaster University, Lancaster, United Kingdom
  • C.-J. Jing, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • E. Nenasheva
    Ceramics Ltd., St. Petersburg, Russia
 
  A prototype Fast Reactive Tuner (FRT) for superconducting cavities has been developed, which allows the frequency to be controlled by application of a potential difference across a newly developed ultra-low loss ferro-electric material residing within the tuner. The tuner operates at room temperature, outside of the cryostat and coupled to the cavity via an antenna and co-axial cable. This technique allows for active compensation of microphonics, eliminating the need to design over-coupled fundamental power couplers and thus significantly reducing RF power particularly for low beam current applications. Modelling; simulation; and stability analysis, of the tuner; cavity; measurement system; and feedback loop, have been performed in the frequency and time domain, and are compared to the latest experimental results. The potential benefits of applying this techniques to ERLs, which are seen as one of the major use cases, are detailed both in general and with regards to specific projects. Ideas and designs for an improved next generation FRT are also discussed.  
slides icon Slides TUCOZBS02 [5.607 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-TUCOZBS02  
About • paper received ※ 17 September 2019       paper accepted ※ 06 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCOZBS04 Characterization of Microphonics in the cERL Main Linac Superconducting Cavities 48
 
  • F. Qiu, D.A. Arakawa, M. Egi, E. Kako, H. Katagiri, T. Konomi, T. Matsumoto, S. Michizono, T. Miura, H. Sakai, K. Umemori
    KEK, Ibaraki, Japan
  • M. Egi, S. Michizono
    Sokendai - Hayama, Hayama, Japan
  • E. Kako, T. Konomi, T. Matsumoto, T. Miura, F. Qiu, H. Sakai, K. Umemori
    Sokendai, Ibaraki, Japan
 
  In the main linac (ML) of the KEK-cERL, two superconducting cavities with high loaded Q (QL ¿ 1×107) are operated in continuous wave (CW) mode. It is important to control and suppress the microphonics detuning owing to the low bandwidth of the cavities. We evaluated the background microphonics detuning by the low level radio frequency system during the beam operation. Interestingly, a ¿field level dependence microphonics¿ phenomenon was observed on one of the cavities in the ML. Several frequency components were suddenly excited if the cavity field is above a threshold field (~3 MV/m). We found that this threshold field is probably related with the cavity quench limits despite the unclear inherent physical mechanism. Furthermore, in order to optimize the cavity resonance control system for better microphonics rejection, we have measured the mechanical transfer function between the fast piezo tuner and cavity detuning. Finally, we validated this model by comparing the model response with actual system response.  
slides icon Slides TUCOZBS04 [7.564 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-TUCOZBS04  
About • paper received ※ 13 September 2019       paper accepted ※ 01 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCOZBS05 Low Level RF ERL Experience at the S-DALINAC* 52
 
  • M. Steinhorst, M. Arnold, T. Bahlo, R. Grewe, L.E. Jürgensen, J. Pforr, N. Pietralla, F. Schließmann, S. Weih
    TU Darmstadt, Darmstadt, Germany
 
  Funding: *Supported by the DFG through GRK 2128.
The recirculating superconducting Darmstadt linear accelerator S-DALINAC [1] is one of the main research instruments at the institute for nuclear physics at the TU Darmstadt. It is operating in cw mode at beam currents of up to 20 uA with energies of up to 130 MeV using a thrice recirculating scheme. In 2010 the present digital low-level rf (LLRF) control system was set into operation. Since 2017 the S-DALINAC can be used as an energy recovery linac (ERL). The ERL mode is adjusted by shifting the phase of the beam by 180° in the second recirculation. The current setup of the LLRF control system is not optimized for the usage in an ERL operation. Therefore investigations in regard of the rf control performance have to be done. The first successful one turn ERL operation was set up in August 2017 where the rf control performance was investigated the first time in this new mode. In this talk the LLRF control system of the S-DALINAC is presented and its perfomance during an ERL operation is discussed.
*[1] N. Pietralla, Nucl. Phys. News 28 No. 2, 4 (2018).
 
slides icon Slides TUCOZBS05 [26.760 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-TUCOZBS05  
About • paper received ※ 13 September 2019       paper accepted ※ 01 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCOZBS06 Cryomodules for the Mainz Energy-Recovering Superconducting Accelerator (MESA) 56
 
  • T. Stengler, K. Aulenbacher, F. Hugpresenter, D. Simon, C.P. Stoll, S.D.W. Thomas
    KPH, Mainz, Germany
  • K. Aulenbacher
    HIM, Mainz, Germany
  • K. Aulenbacher
    GSI, Darmstadt, Germany
 
  Funding: This work is supported by the German Research Foundation (DFG) under the Cluster of Excellence "PRISMA+" EXC 2118/2019}
The Mainz Energy-recovering Superconducting Accelerator (MESA) will be an electron accelerator allowing c.w. operation in energy-recovery (ER) mode. The energy gain of 50 MeV will be provided by two modified ELBE/Rossendorf-type cryomodules. The MESA-cryomodules are delivered and tested. The test results will be discussed.
 
slides icon Slides TUCOZBS06 [10.644 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ERL2019-TUCOZBS06  
About • paper received ※ 16 September 2019       paper accepted ※ 11 November 2019       issue date ※ 24 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)