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A fast reactive tuner for SRF

 Goal: Develop a Fast Reactive Tuner for SRF cavities
« Apply advances in ferroelectrics to develop non-mechanical tuner
« |dea: induce change in tuner permittivity to shift cavity frequency
* Reduce effects of microphonics on cavity operation

* Applicability: Low beam-loading SRF machines
 Examples: low-beta accelerators or high current ERLs
* Suppression of micro-phonics, Lorentz & other detuning

 Expectations with a viable FE-FRT
« Continuous tuning range
* Tuner system out side cryostat and with no moving parts
 Significant reduction in RF power, with increase in tuning sensitivity
« Eliminate frequent actuation of mechanical tuners
« Set and forget” mechanical tuners
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Reactive Tuners: not a new idea

Pin Diode Tuners Ferrite Tuners

Diode switching alternates sign of reactance. Ferrite stub to moderate reactance
Frequency control by pulse-width modulation. Frequency control by external coil.

O. Despe, K. Johnson and T.~Khoe, IEEE Trans. Nucl. C. Vollinger and F. Caspers, Ferrite-tuner
Sci.,vol. 20 1973. Development for 80 MHz Single-Cell RF-Cavity
D. Schulze et al., Proton Linear Accelerator Conf, 1972 Using Orthogonally Biased Garnets, IPAC 15.
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Why a Ferro-electric Tuner?

* Pin Diode Tuners
« Operating frequency limited by lumped nature of diodes

« Binary on-off diode switching introduces phase ripple

* Ferrite Tuners
» Typically suffer from heavy losses particularly at saturation.
« Tuning speed limited by coil generating (large) magnetic field

e Ferro-electric Material
 Advances in ferro-electric ceramics makes this possible
« Ceramic: BaTiO3 - SrTiO3 (BST) with Mg-based additives
« Fast switching and tunability at high biasing voltage field
« ¢ tunability of 6 — 8% at a 15 kV/cm
* response times of tau <10 ns
* Very low loss tangents: tan 6 < 10-3 in L band
* Allows for tuner design such that:
« Continuous tuning range.
« Tuner is outside cryostat and has no moving parts
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Ferro-electric material

 Development of ferro-electric ceramic
« Material parameters developed sufficiently to consider application

o
S * May be further development for mechanical/RF considerations
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FE-FRT: Overview of how it works

e Cavity Tuning
« Cavity’s frequency tuned by a coupled voltage controlled reactance
Control
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Evaluating FE-FRT performance

e Define State Ratio:
SR is tuning range per change in bandwidth wrt cavity with no FRT

Tuning Range  Aw;, AB

State Ratio = SR = - —
Increase in BW ABW 2G

SR dependent on bias voltage applied to the FE-RFT

e Define Figure of Merit:
Tuning Range

FoM =
Geometric Average of increase in BW

AO
AB,,)? A 2| sin ——|
FoM=\/SR1><SR2=‘/(4G1(2;) = e ~ -
2 VABWIABW: 1 Py - )

« SR1and SRy are states corresponding to the full HV range of FRT
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Our Prototype FE-FRT

* Prototype FE-FRT
« RF design: S. Kazakov, FNAL. Fabrication: Euclid Techlabs in USA

« Testing and development program, now ongoing at CERN

RF short

Water to cool ferroelectric

DC short/nitrogen injection
High Voltage

Bias to set
ferroelectric

RF power from cavity permittivity

Ferroelectric (light blue)
* Brazed to rings

« Active cooling

* Designed for 400 MHz

* Mechanical design limits HV
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FE-FRT: Realisation as a Device

e FE-FRT: embed ferro-electric in shorted transmission line
« FoM is independent of FE-FRT line length

« Operating w defined by line length,
« but Aw12 ( x AB) is set by FE-FRT antenna coupling

* Line length defines operational configuration an FRT
« Moving away from open:
* more reactive power, increased shift from wo, decreased QL
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FE-FRT as a transmission line

* Prototype modelled as a composite transmission line
« Comparison with warm measurements: good conceptual agreement

= « Only adjustment: braze material resistivity & ferroelectric permittivity
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FE-FRT Test Setup

 FE-FRT test with 400MHz HL-LHC prototype crab cavity
« Cavity operated at both 4.5 & 2 K. Fixed antennas

PICK-UP

Transmissif‘n v

Cryomodule
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Demonstration of Frequency Tuning

 First measurement of Af on SRF cavity from FE-FRT

Frequency Shift [Hz]
20 30 40

0 10

3kV

50

-15
5
-90 3

-115

e Cavity-FRT response much faster than cavity filling time

Change in Frequency [HZz]

—4

High Voltage On
3
i 3 . ¢
« data ; . e

. - is
error function fit ¢ : .
-== 10 and 90% levels
-2 0 2

Time [ms]

Frequency response from
| & Q measurements.
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FE-FRT Prototype: Cavity Response

o Cavity-FRT response is significantly faster than cavity
 reaffirms that FE-FRT can be used to correct cavity microphonics

e Cavity response to tuner < 50 ys

. Cavity time constant ¢ = & ~ 46 ms
@

* Present response time limited by measurement setup
« => expect cavity response to tuner << 50 ps
 LLRF Frequency measurement requires some signal processing
» Refined measurement and full tuning loop now being implemented
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Application of FE-FRT

 FE-FRT Performance:
e FoM is crucial: FoM ~30 @ 800MHz. Realistic for existing material

» defined by quality of ferroelectric & mechanical/RF design
* Primary function of FRT defined by beam loading scenario

 FE-FRT Application Scenarios
 High beam loading: FE-FRT designed to suppress microphonics
« Target full microphonics spectrum

 Low beam loading (eg ERL): FE-FRT design to reduce RF power
« (Cavity+Tuner) critical coupled & microphonics suppressed

* Mixed Scenario: FE-FRT in conjunction with Mechanical tuners
« Different possibilities can be considered
» eg frequency stabilisation with different beam species
* Line length defines frequency offset due to tuner
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FE-FRT Case study: PERLE

e PERLE ERL: 5-cell Nb cavity at 802MHz

 No S|gn|f|cant beam Ioadlng and Af = 80 Hz (at peak detuning)
_ PERLE 5-cell Cavit

Wo 801.58 MHz
Qo 2 x1010
R/Q 392 Q
Uc 141 J
QFrpc 107
PrF 45 kW
Max Afy, 40 Hz

e FE-FRT Parameters: Material/Mechanical optimisation

Monte Carlo of ferro electric section
Ferro electric parameters
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FE-FRT Case study: PERLE

 FE-FRT configuration:
* Input: FoM = 30 and require tuning range of Af =80 Hz

* Implication:
« Operating closer to critical coupling => RF povger reduced
V: p+1 Aw
Prp=—"* P 1+<2QL ”)]
4 /QQL p Wy
e Can achieve ~ 15 fold reduction in RF power
« ~ 70 kVar of peak reactive power => Reactive HV ~2.2 kV

SR\
.;:4‘ 40 ....................... — FE-ERT Afrm —o | . FOM 30
2 30 == FE-FRT Afes=0.5]7; Af 80 Hz
& 20l FE-FRT Afe =1 | & Qrpc 3 x 108
g PrF 3 kW
L T oy P, 5 4 kKW
205 107 10° 10° 1o X riivar
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Summary

e Concept:
« Advances in ferroelectric ceramics open possibility of reactive tuner
« Ceramics are extremely fast: response times < 10 ns
* For SRF cavities material sufficiently development for now.

 FE-FRT Prototype results:
 SRF cavity response to FRT: extremely fast << 50 us
* Not limited by cavity time constant.
« Mechanical & RF design crucial to FRT performance

 FE-FRT Benefits
 FE-FRT ideal for low beam loading Machine
« Eliminate microphonics => drastically reducing RF power

« Tuning with tuner external to cryomodule

 FE-FRT prototype with tuning loop under test at CERN
« Exploring a number of potential use cases
 FE-FRT not to be seen as just corrective add on
« Potential for real benefits if included at cavity/module design stage
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