Author: Grillenberger, J.
Paper Title Page
MOC03 Upgrade of the PSI Injector 2 Cyclotron 123
 
  • M. Schneider, J. Grillenberger
    PSI, Villigen PSI, Switzerland
 
  The high intensity proton accelerator facility at PSI is capable of providing beam currents of up to 2.4 mA at a kinetic energy of 590 MeV. PSI is following an upgrade plan to further increase the beam power and to further minimize proton losses. Up to now, this has mainly been achieved by the installation of high gradient copper resonators in the Ring cyclotron and the installation of more powerful RF-amplifiers. Currently, PSI follows a similar approach for the Injector 2 cyclotron providing 72 MeV protons for the injection into the 590 MeV Ring cyclotron. In order to increase the turn separation in the injector cyclotron which results in lower relative beam losses, the two 150 MHz resonators operated in accelerating mode are replaced with two 50 MHz Aluminum resonators providing higher acceleration voltage. This paper describes the status of the upgrade, i.e., the replacement of the first resonator and related hardware.  
slides icon Slides MOC03 [10.052 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-MOC03  
About • paper received ※ 13 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEB04 BDSIM Simulation of the Complete Radionuclide Production Beam Line from Beam Splitter to Target Station at the PSI Cyclotron Facility 275
 
  • H. Zhang, R. Eichler, J. Grillenberger, W. Hirzel, S. Joray, D.C. Kiselev, J.M. Schippers, J. Snuverink, R. Sobbia, A. Sommerhalder, Z. Talip, N.P. van der Meulen
    PSI, Villigen PSI, Switzerland
  • L.J. Nevay
    Royal Holloway, University of London, Surrey, United Kingdom
  • L.J. Nevay
    JAI, Egham, Surrey, United Kingdom
 
  The beam line for radionuclide production on the PSI Cyclotron Facility starts with an electrostatic beam splitter, which peels protons of a few tens of microampere from a beam around two milliampere. The peeled beam is then guided onto a target station for routine production of a variety of radionuclides [1]. Beam Delivery Simulation (BDSIM), a Geant4 based simulation tool, enables the simulation of not only beam transportation through optics elements like dipoles and quadrupoles, but also particle passage through components like collimator and degrader [2-3]. Furthermore, BDSIM facilitates user built elements with accompanying electromagnetic field, which is essential for the modeling of the first element of the beam line, the electrostatic beam splitter. With a model including all elements from beam splitter to target, BDSIM simulation delivers a better specification of the beam along the complete line, for example, beam profile, beam transmission, energy spectrum, as well as power deposit, which is of importance not only for present operation but also for further development.
REFERENCES
[1] M. Olivo and H. W. Reist, Proc. EPAC’88, Rome, Italy, June 1988, pp. 1300-1302.
[2] www.pp.rhul.ac.uk/bdsim
[3] S. Agostinelli, et al, Nucl. Instr. Meth. Phys. Res. A(3) 250-303.
 
slides icon Slides WEB04 [4.761 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-Cyclotrons2019-WEB04  
About • paper received ※ 13 September 2019       paper accepted ※ 26 September 2019       issue date ※ 20 June 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)