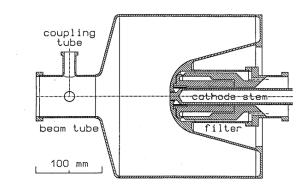


concep

OPERATIONAL EXPERIENCE FROM 8 YEARS OF ELBE SRF GUN II


The 21st International Conference on Radio-Frequency Superconductivity (SRF 2023) 25 to 30 June 2023 at the Amway Plaza Hotel in Grand Rapids, Michigan, USA.

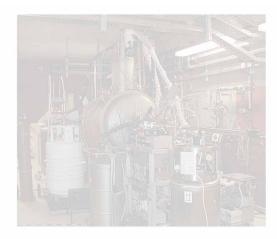
Institute für Strahlenphysik · FWKE / ELBE · Dr. André Arnold · a.arnold@hzdr.de · www.hzdr.de

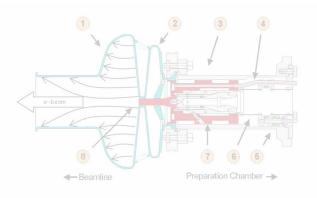
On behalf of the ELBE SRF gun group

HZDRs pioneering work over the last 20 years

Cavity: Cathode: Nb re-entrant type 500 MHz Cs_3Sb (532 nm, 1 W laser) electrically isolated, LHe cooled

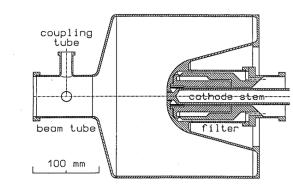
Cavity Material	High	RRR Nb
Frequency	500	MHz
Peak Surface E/E_c	1.1	_
Peak Surface B/E_C	2.4	$\frac{mT}{MV/m}$
G factor Cavity	90	Ω
G factor Cathode	390	$M\Omega$
Q_0 at 4.2 K	10°	
Acc. Distance	10	cm


H. Chaloupka et al., Proc. 4th SRF Workshop, KEK, Japan, 1989


<u>A. Michalke et al., Proc. of 5th SRF</u> Workshop, DESY, Germany, 1991

Hist	torical overview	
198	8 first proposal	H. Piel et al., 10th FEL conf. Jerusalem, 1988
199	1 first experiments	A. Michalke, PhD thesis, univ. Wuppertal, 1992
200	2 ¹⁾ first electron beam	D. Janssen et al., NIM A, Vol. 507 (2003) 314
201	0 ²⁾ first LINAC acceleration	R. Xiang, et al., Proc. of IPAC'10, Japan, 2010
201	3 first lasing of IR FEL	J. Teichert, et al., NIM A, Vol. 743 (2014) 114
201	8 ³⁾ user operation THz + neutron	s J.Teichert, et al. PRAB 24, 033401 (2021)
1) Dr	assol (balf call cavity) = 2) SPE gup I (3.5)	a = 1 - 3 = 2 = 3 = 2 = 3 = 2 = 3 = 2 = 3 = 2 = 3 = 2 = 2

¹⁾ Drossel (half cell cavity) ²⁾ SRF gun I (3.5 cell cavity) ³⁾ SRF gun II (3.5 cell cavity)



Cavity: Cathode: Niobium ½ cell, TESLA 1.3 GHz Cs₂Te (262 nm, 1 W laser) thermally isolated, LN₂ cooled

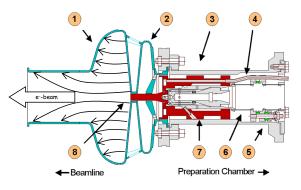
HZDRs pioneering work over the last 20 years

Cavity: Cathode: Nb re-entrant type 500 MHz Cs_3Sb (532 nm, 1 W laser) electrically isolated, LHe cooled

High	RRR Nb
500	MHz
1.1	
2.4	mT MV/m
90	Ω
390	$M\Omega$
10°	
10	cm
	500 1.1 2.4 90 390 10 ⁹

H. Chaloupka et al., Proc. 4th SRF Workshop, KEK, Japan, 1989

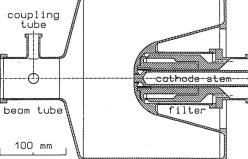
A. Michalke et al., Proc. of 5th SRF Workshop, DESY, Germany, 1991



Historic	al overview	
1988	first proposal	H. Piel et al., 10th FEL conf. Jerusalem, 1988
1991	first experiments	A. Michalke, PhD thesis, univ. Wuppertal, 1992
2002 1)	first electron beam	D. Janssen et al., NIM A, Vol. 507 (2003) 314
2010 ²⁾	first LINAC acceleration	R. Xiang, et al., Proc. of IPAC'10, Japan, 2010
2013	first lasing of IR FEL	J. Teichert, et al., NIM A, Vol. 743 (2014) 114
2018 ³⁾	user operation THz + neutrons	J.Teichert, et al. PRAB 24, 033401 (2021)

¹⁾ Drossel (half cell cavity) ²⁾ SRF gun I (3.5 cell cavity) ³⁾ SRF gun II (3.5 cell cavity)

2 19.08.2023 Operational experience from 8 years of ELBE SRF gun II



 Cavity:
 Niobium ½ cell, TESLA 1.3 GHz

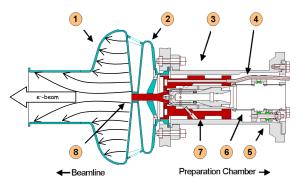
 Cathode:
 Cs2Te (262 nm, 1 W laser) thermally isolated, LN2 cooled

HZDRs pioneering work over the last 20 years

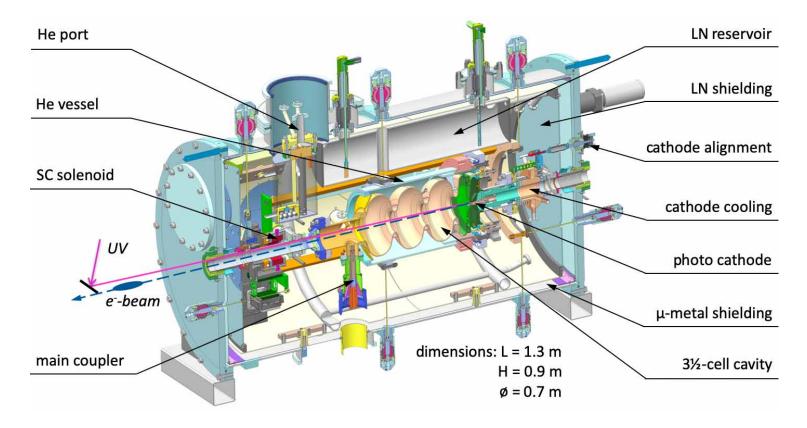
Cavity: Cathode: Nb re-entrant type 500 MHz Cs₃Sb (532 nm, 1 W laser) electrically isolated, LHe cooled

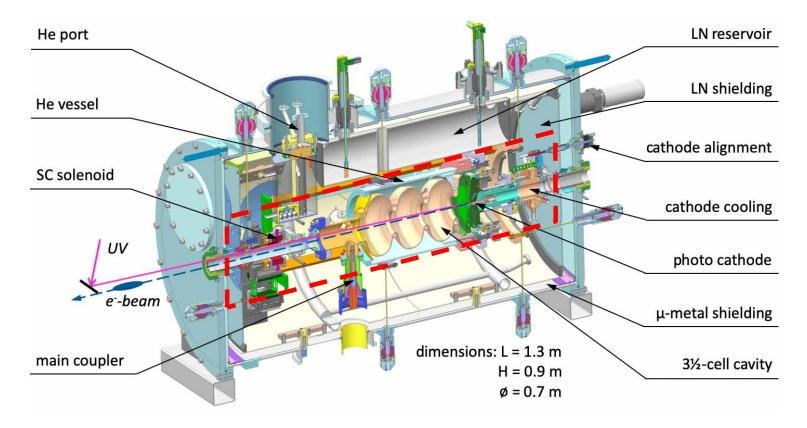
Cavity Material	High	RRR Nb
Frequency	500	MHz
Peak Surface E/E_c	1.1	_
Peak Surface B/E_C	2.4	$\frac{mT}{MV/m}$
G factor Cavity	90	Ω
G factor Cathode	390	$M\Omega$
Q_0 at 4.2 K	10°	
Acc. Distance	10	cm

H. Chaloupka et al., Proc. 4th SRF Workshop, KEK, Japan, 1989

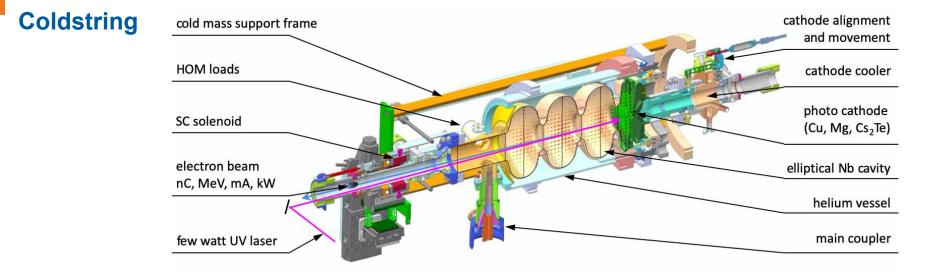

A. Michalke et al., Proc. of 5th SRF Workshop, DESY, Germany, 1991

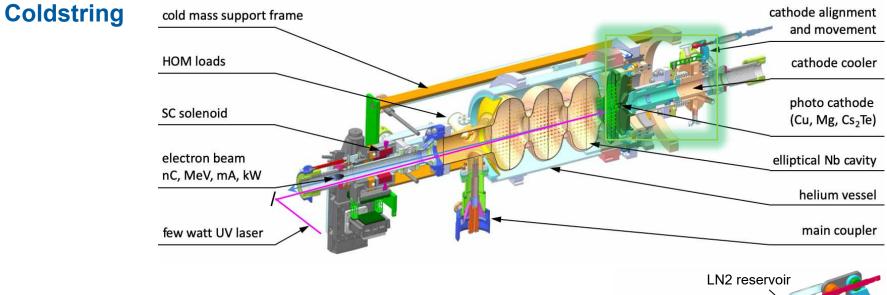
matoric		
1988	first proposal	H. Piel et al., 10th FEL conf. Jerusalem, 1988
1991	first experiments	A. Michalke, PhD thesis, univ. Wuppertal, 1992
2002 1)	first electron beam	D. Janssen et al., NIM A, Vol. 507 (2003) 314
2010 ²⁾	first LINAC acceleration	R. Xiang, et al., Proc. of IPAC'10, Japan, 2010
2013	first lasing of IR FEL	J. Teichert, et al., NIM A, Vol. 743 (2014) 114
2018 ³⁾	user operation THz + neutrons	J.Teichert, et al. PRAB 24, 033401 (2021)

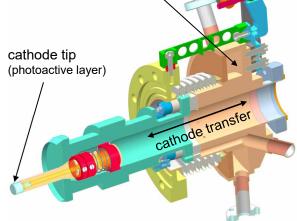

¹⁾ Drossel (half cell cavity) ²⁾ SRF qun I (3.5 cell cavity) ³⁾ SRF qun II (3.5 cell cavity)

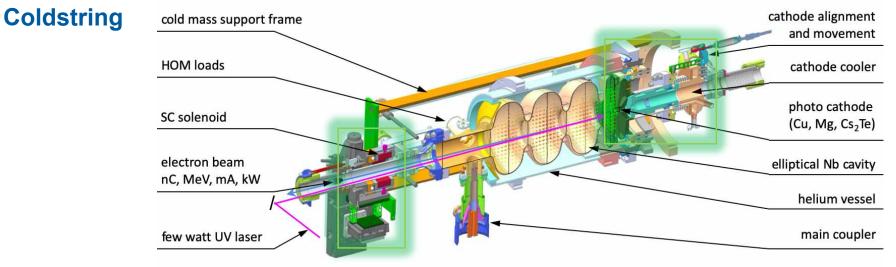

Cavity: Niobium ¹/₂ cell, TESLA 1.3 GHz Cs₂Te (262 nm, 1 W laser) Cathode: thermally isolated, LN₂ cooled

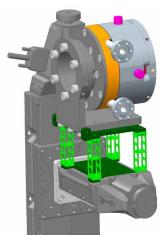
Cryomodule of ELBE SRF gun II

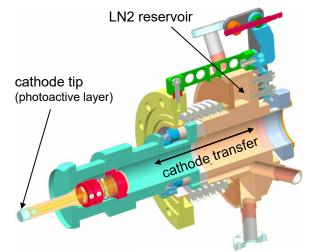


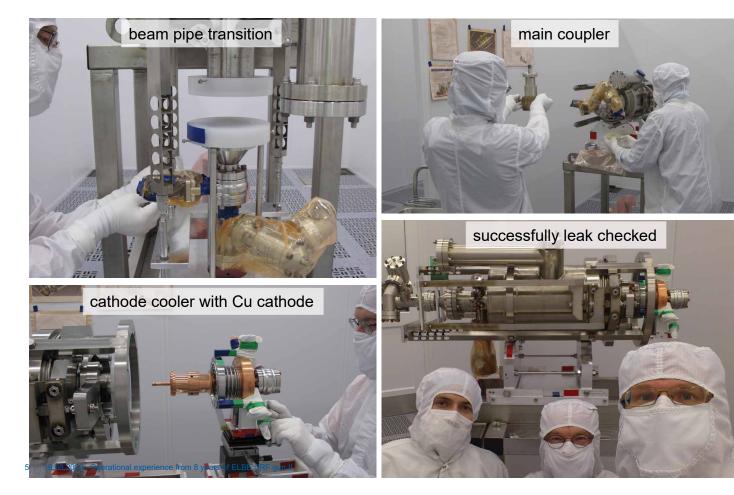

Cryomodule of ELBE SRF gun II







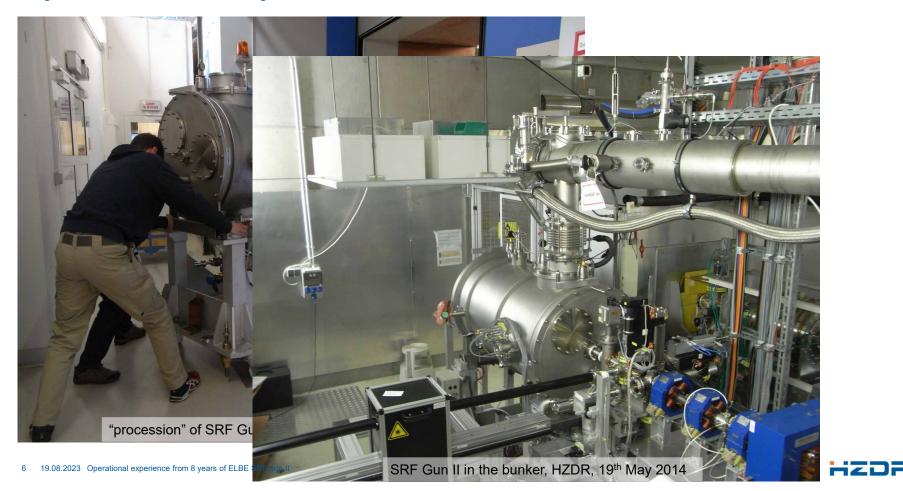




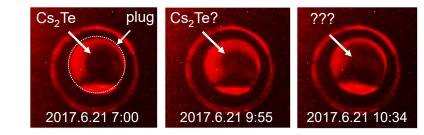
- Cs₂Te, Cu, GaAs, Mg cathodes
- cathode cooling by LN to 77 K
- cathode transfer into the cold gun
- therm. and electrical isolation
- DC bias up to 7 kV to suppress MP
- moveable (±0.6 mm) by remote stepper for best RF focusing
- SC solenoid B_{z,max}=0.5 T @ 10 A
- Remote controlled xy-table (77 K)

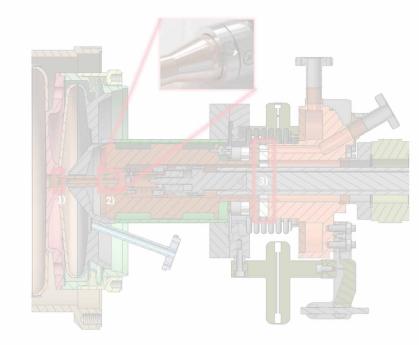
Cold mass cleanroom assembly at JLab

Cavity was built at JLab by P. Kneisel / G. Ciovati and many others helped!

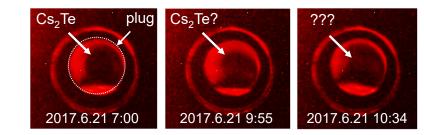


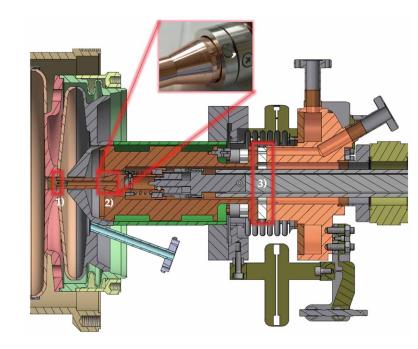
Cryomodule assembly at HZDR

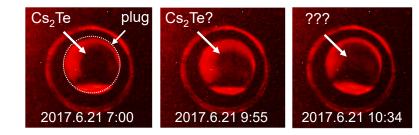


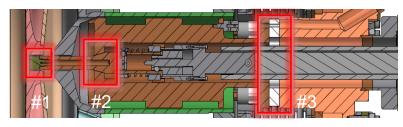


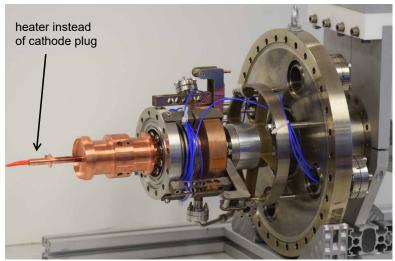
Cryomodule assembly at HZDR


- Problem: Cathode overheating in the 2nd week operation, total loss of Cs₂Te layer in the gun, FE + drop of cavity Q0
- Investigation: all thermal contacts of cathode insert: (#1) Mo plug and Cu body, (#2) Cu body and Cu cooler, (#3) Cu cooler and LN2 reservoir (ceramic in between)
- **Setup:** complete cathode insert assembled in vacuum chamber and cooled to 77K, electrical heater at tip to simulate RF loss, several PT100 sensors to measure temperature difference on each contact
- Finding: Mo plugs getting loose after thermal cycle to 400 °C (during cathode prep.) and cool down to 77K in the gun! Reason is the different expansion coefficients of Mo and Cu.
- **Solution:** Cu plugs (as substrate) torqued with 2.5 Nm on cathode body (temp. increase with RF neglectable)

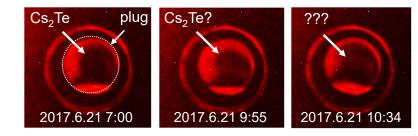


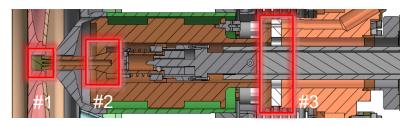

- Problem: Cathode overheating in the 2nd week operation, total loss of Cs₂Te layer in the gun, FE + drop of cavity Q0
- Investigation: all thermal contacts of cathode insert: (#1) Mo plug and Cu body, (#2) Cu body and Cu cooler, (#3) Cu cooler and LN2 reservoir (ceramic in between)
- **Setup:** complete cathode insert assembled in vacuum chamber and cooled to 77K, electrical heater at tip to simulate RF loss, several PT100 sensors to measure temperature difference on each contact
- Finding: Mo plugs getting loose after thermal cycle to 400 °C (during cathode prep.) and cool down to 77K in the gun! Reason is the different expansion coefficients of Mo and Cu.
- **Solution:** Cu plugs (as substrate) torqued with 2.5 Nm on cathode body (temp. increase with RF neglectable)

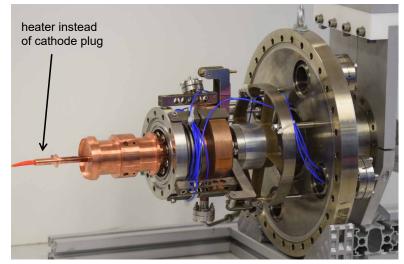




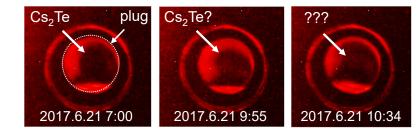
- Problem: Cathode overheating in the 2nd week operation, total loss of Cs₂Te layer in the gun, FE + drop of cavity Q0
- Investigation: all thermal contacts of cathode insert: (#1) Mo plug and Cu body, (#2) Cu body and Cu cooler, (#3) Cu cooler and LN2 reservoir (ceramic in between)
- Setup: complete cathode insert assembled in vacuum chamber and cooled to 77K, electrical heater at tip to simulate RF loss, several PT100 sensors to measure temperature difference on each contact
- Finding: Mo plugs getting loose after thermal cycle to 400 °C (during cathode prep.) and cool down to 77K in the gun! Reason is the different expansion coefficients of Mo and Cu.
- **Solution:** Cu plugs (as substrate) torqued with 2.5 Nm on cathode body (temp. increase with RF neglectable)

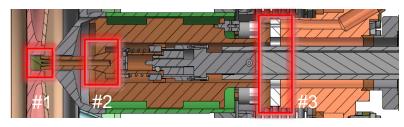


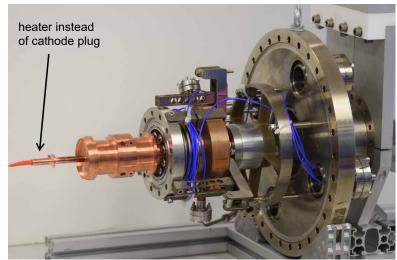



- Problem: Cathode overheating in the 2nd week operation, total loss of Cs₂Te layer in the gun, FE + drop of cavity Q0
- Investigation: all thermal contacts of cathode insert: (#1) Mo plug and Cu body, (#2) Cu body and Cu cooler, (#3) Cu cooler and LN2 reservoir (ceramic in between)
- Setup: complete cathode insert assembled in vacuum chamber and cooled to 77K, electrical heater at tip to simulate RF loss, several PT100 sensors to measure temperature difference on each contact
- **Finding:** Mo plugs getting loose after thermal cycle to 400 °C (during cathode prep.) and cool down to 77K in the gun! Reason is the different expansion coefficients of Mo and Cu.

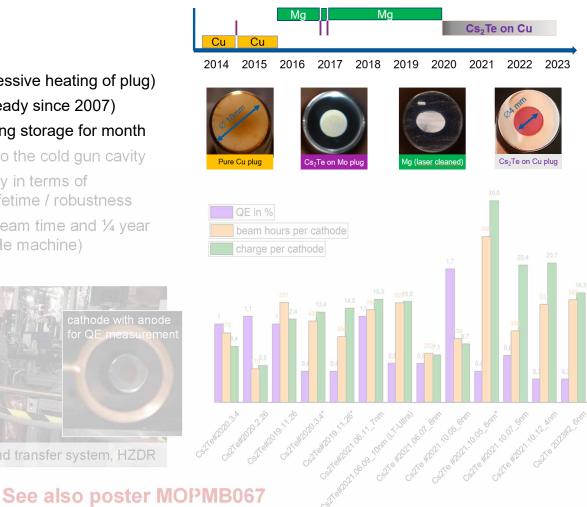
• **Solution:** Cu plugs (as substrate) torqued with 2.5 Nm on cathode body (temp. increase with RF neglectable)





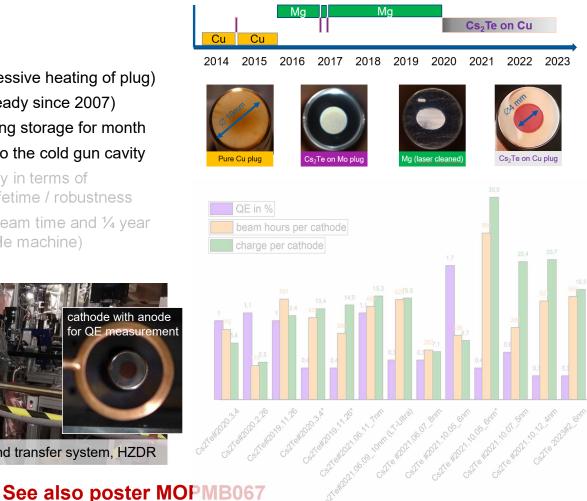

- Problem: Cathode overheating in the 2nd week operation, total loss of Cs₂Te layer in the gun, FE + drop of cavity Q0
- Investigation: all thermal contacts of cathode insert: (#1) Mo plug and Cu body, (#2) Cu body and Cu cooler, (#3) Cu cooler and LN2 reservoir (ceramic in between)
- Setup: complete cathode insert assembled in vacuum chamber and cooled to 77K, electrical heater at tip to simulate RF loss, several PT100 sensors to measure temperature difference on each contact
- **Finding:** Mo plugs getting loose after thermal cycle to 400 °C (during cathode prep.) and cool down to 77K in the gun! Reason is the different expansion coefficients of Mo and Cu.

• **Solution:** Cu plugs (as substrate) torqued with 2.5 Nm on cathode body (temp. increase with RF neglectable)



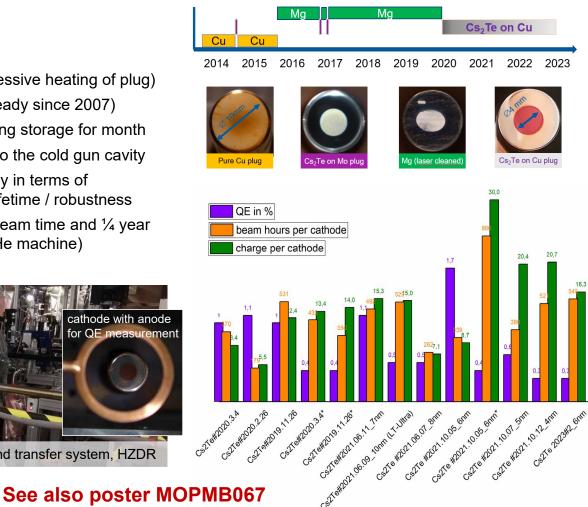
Cathode experiences

- 30 cathodes (2 Cu, 12 Mg, 16 Cs_2Te)
- since 2020 13 Cs₂Te on Cu (solved excessive heating of plug)
- Cs₂Te preparation is done in-house (already since 2007)
- QE remains stable at a few percent during storage for month
- Cathodes are transferred under UHV into the cold gun cavity
- In the gun all cathodes behave differently in terms of multipacting, QE during operation and lifetime / robustness
- on average per cathode 15 C in 500hr beam time and ¼ year in the gun (typ. limited by warm up of LHe machine)



Cathode experiences

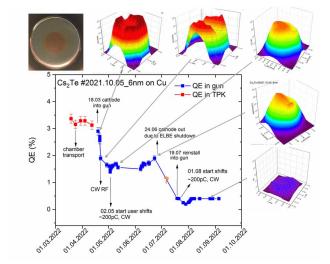
- 30 cathodes (2 Cu, 12 Mg, 16 Cs_2Te)
- since 2020 13 Cs₂Te on Cu (solved excessive heating of plug)
- Cs₂Te preparation is done in-house (already since 2007)
- QE remains stable at a few percent during storage for month
- Cathodes are transferred under UHV into the cold gun cavity
- In the gun all cathodes behave differently in terms of multipacting, QE during operation and lifetime / robustness
- on average per cathode 15 C in 500hr beam time and ¼ year in the gun (typ. limited by warm up of LHe machine)

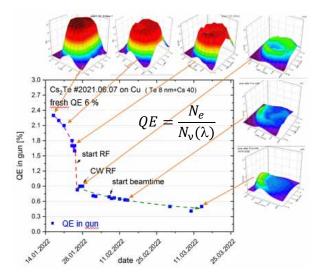


Cathode experiences

- 30 cathodes (2 Cu, 12 Mg, 16 Cs_2Te)
- since 2020 13 Cs₂Te on Cu (solved excessive heating of plug)
- Cs₂Te preparation is done in-house (already since 2007)
- QE remains stable at a few percent during storage for month
- Cathodes are transferred under UHV into the cold gun cavity
- In the gun all cathodes behave differently in terms of multipacting, QE during operation and lifetime / robustness
- on average per cathode 15 C in 500hr beam time and ¼ year in the gun (typ. limited by warm up of LHe machine)

Two effects during SRF operation


- 1. Fast QE drop when RF is loaded with a new cathode
 - Only few multipacting events combined with vacuum rise and electron shower that travels towards gun exit
- 2. Slow QE decay / distribution change during charge extraction
 - photo electrons & dark current hit the cavity wall and released gas and contaminates the sensitive cathode layer
 - released gas molecules are ionized by photo electrons & dark current, ions back bombard the cathode surface
 - CW RF (few watts) overheats the thin dielectric film (not the plug)

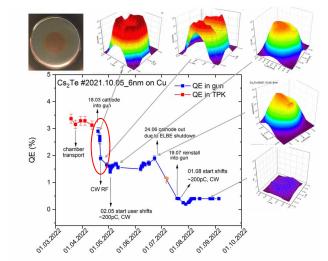

Next steps

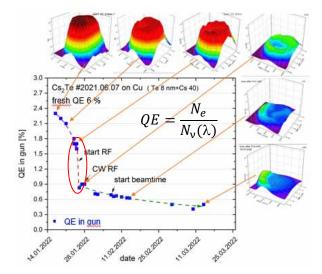
- in vacuum sample transport for XPS* study
- Mo brazed on Cu with good therm. contact

See also poster MOPMB085

*XPS: X-ray photoelectron spectroscopy

Two effects during SRF operation


- 1. Fast QE drop when RF is loaded with a new cathode
 - Only few multipacting events combined with vacuum rise and electron shower that travels towards gun exit
- 2. Slow QE decay / distribution change during charge extraction
 - photo electrons & dark current hit the cavity wall and released gas and contaminates the sensitive cathode layer
 - released gas molecules are ionized by photo electrons & dark current, ions back bombard the cathode surface
 - CW RF (few watts) overheats the thin dielectric film (not the plug)

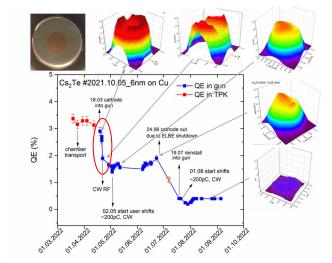

Next steps

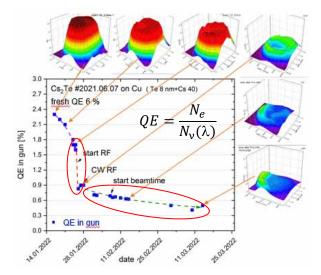
- in vacuum sample transport for XPS* study
- Mo brazed on Cu with good therm. contact

See also poster MOPMB085

*XPS: X-ray photoelectron spectroscopy

Two effects during SRF operation


- 1. Fast QE drop when RF is loaded with a new cathode
 - Only few multipacting events combined with vacuum rise and electron shower that travels towards gun exit
- 2. Slow QE decay / distribution change during charge extraction
 - photo electrons & dark current hit the cavity wall and released gas and contaminates the sensitive cathode layer
 - released gas molecules are ionized by photo electrons & dark current, ions back bombard the cathode surface
 - CW RF (few watts) overheats the thin dielectric film (not the plug)


Next steps

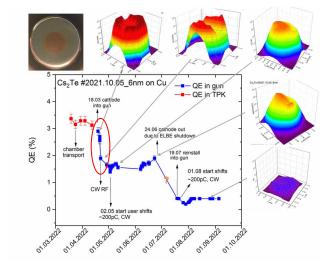
- in vacuum sample transport for XPS* study
- Mo brazed on Cu with good therm. contact

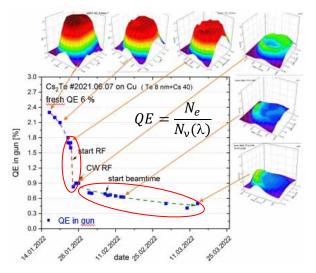
See also poster MOPMB085

*XPS: X-ray photoelectron spectroscopy

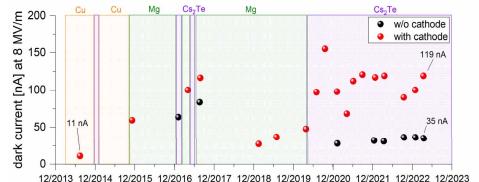
Two effects during SRF operation

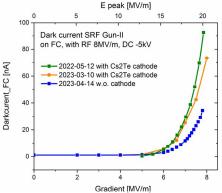
- 1. Fast QE drop when RF is loaded with a new cathode
 - Only few multipacting events combined with vacuum rise and electron shower that travels towards gun exit
- 2. Slow QE decay / distribution change during charge extraction
 - photo electrons & dark current hit the cavity wall and released gas and contaminates the sensitive cathode layer
 - released gas molecules are ionized by photo electrons & dark current, ions back bombard the cathode surface
 - CW RF (few watts) overheats the thin dielectric film (not the plug)

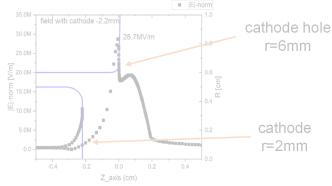

Next steps

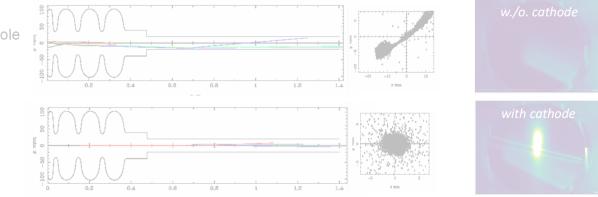

- in vacuum sample transport for XPS* study
- Mo brazed on Cu with good therm. contact

See also poster MOPMB085





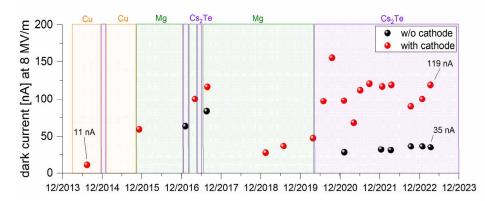


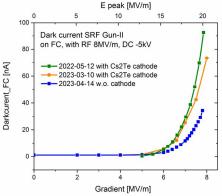

Dark current (at 1.4 m downstream the cathode)

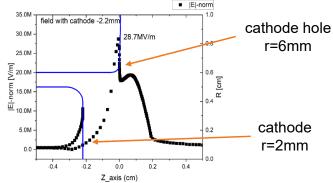
- Typ. dark current
 ~ 120 nA @ 8 MV/m
- 70% from cathode, but unclear whether from the Cs₂Te layer or substrate
- 30% from near the hole in backplane
- Less dark current and no MP with Mg & Cu

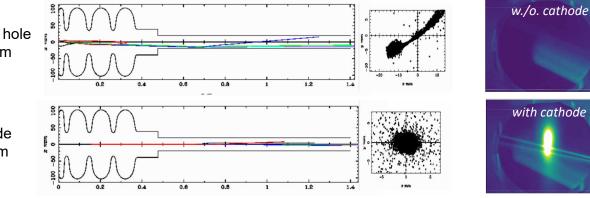
4m downsteam

screen


9 A G


10 19.08.2023 Operational experience from 8 years of ELBE SRF gun II


courtesy R. Xiang


Dark current (at 1.4 m downstream the cathode)

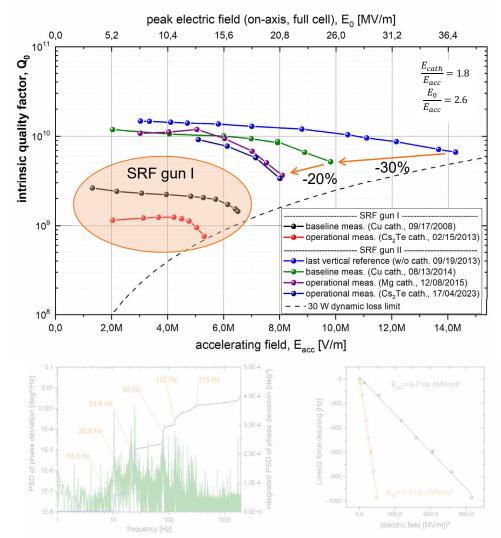
- Typ. dark current
 ~ 120 nA @ 8 MV/m
- 70% from cathode, but unclear whether from the Cs₂Te layer or substrate
- 30% from near the hole in backplane
- Less dark current and no MP with Mg & Cu

courtesy R. Xiang

QvsE

- in last vertical test at Jlab E0=37 MV/m was achieved,
- -30% loss due to clean room assembly and shipping
- -20% loss because of overheating of 1st Cs₂Te (2015)
- up today no additional degradation despite 30 cathodes

Microphonics


- σ_f = 6.6 Hz (RMS); 24.6 Hz membrane pumps, 20+130 Hz compressors of LHe machine, 10+80 Hz unknown
- σ_{ϕ} =0.02° at 1.3 GHz or timing jitter σ_{t} =43 fs (in loop)

Lorentz Force (LF) detuning

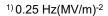
- $k_0 = 1.5 \text{ Hz}(\text{MV/m})^{-2}$, 6x higher than for TESLA 9 cell ¹)
- LF detuning vs. E0 for each mode clearly point on weak half cell as reason, stiffeners are not satisfactory
- Δf = 650 Hz for E_{acc} = 8 MV/m, because of bandwidth of BW = 200 Hz tuning while changing gradient is essential

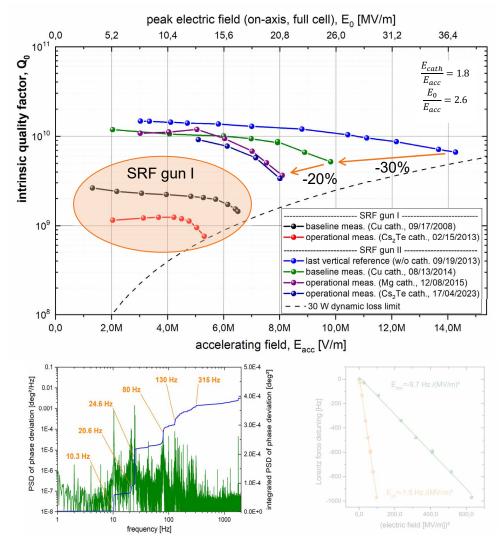
Helium pressure sensitivity: 155 Hz/mbar (stability of LHe machine is 0.2 mbar pk-pk)

1) 0.25 Hz(MV/m)-2

QvsE

- in last vertical test at Jlab E0=37 MV/m was achieved,
- -30% loss due to clean room assembly and shipping
- -20% loss because of overheating of 1st Cs₂Te (2015)
- up today no additional degradation despite 30 cathodes


Microphonics


- σ_f = 6.6 Hz (RMS); 24.6 Hz membrane pumps, 20+130 Hz compressors of LHe machine, 10+80 Hz unknown
- σ_{ϕ} =0.02° at 1.3 GHz or timing jitter σ_{t} =43 fs (in loop)

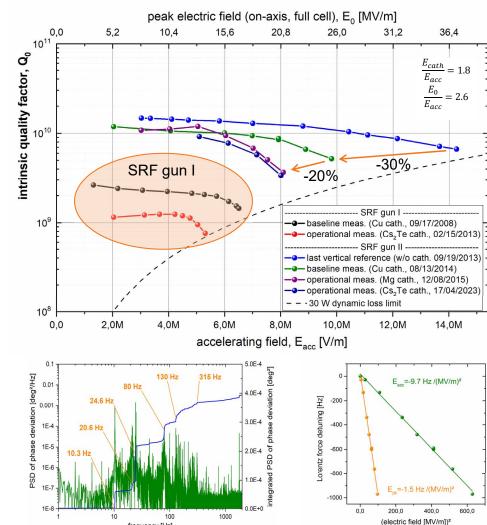
Lorentz Force (LF) detuning

- $k_0 = 1.5 \text{ Hz}(\text{MV/m})^{-2}$, 6x higher than for TESLA 9 cell ¹)
- LF detuning vs. E0 for each mode clearly point on weak half cell as reason, stiffeners are not satisfactory
- $\Delta f = 650$ Hz for $E_{acc} = 8$ MV/m, because of bandwidth of BW = 200 Hz tuning while changing gradient is essential

Helium pressure sensitivity: 155 Hz/mbar (stability of LHe machine is 0.2 mbar pk-pk)

QvsE

- in last vertical test at Jlab E0=37 MV/m was achieved,
- -30% loss due to clean room assembly and shipping
- -20% loss because of overheating of 1st Cs₂Te (2015)
- up today no additional degradation despite 30 cathodes


Microphonics

- σ_f = 6.6 Hz (RMS); 24.6 Hz membrane pumps, 20+130 Hz compressors of LHe machine, 10+80 Hz unknown
- σ_{ϕ} =0.02° at 1.3 GHz or timing jitter σ_{t} =43 fs (in loop)

Lorentz Force (LF) detuning

- k₀ = 1.5 Hz(MV/m)⁻², 6x higher than for TESLA 9 cell ¹)
- LF detuning vs. E0 for each mode clearly point on weak half cell as reason, stiffeners are not satisfactory
- $\Delta f = 650$ Hz for $E_{acc} = 8$ MV/m, because of bandwidth of BW = 200 Hz tuning while changing gradient is essential

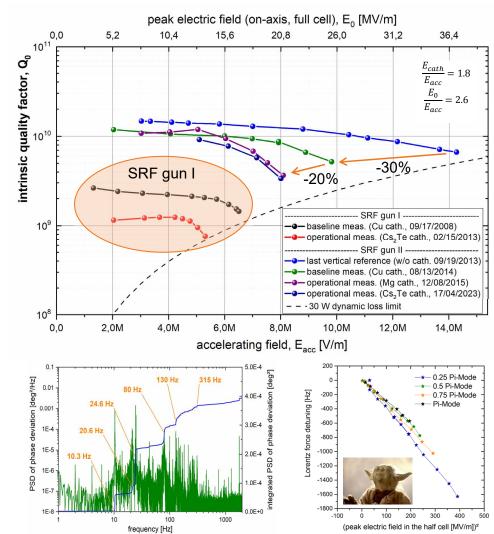
Helium pressure sensitivity: 155 Hz/mbar (stability of LHe machine is 0.2 mbar pk-pk)

frequency [Hz]

1) 0.25 Hz(MV/m)-2

QvsE

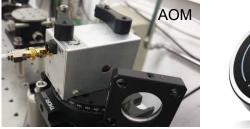
- in last vertical test at Jlab E0=37 MV/m was achieved,
- -30% loss due to clean room assembly and shipping
- -20% loss because of overheating of 1st Cs₂Te (2015)
- up today no additional degradation despite 30 cathodes


Microphonics

- σ_f = 6.6 Hz (RMS); 24.6 Hz membrane pumps, 20+130 Hz compressors of LHe machine, 10+80 Hz unknown
- σ_{ϕ} =0.02° at 1.3 GHz or timing jitter σ_{t} =43 fs (in loop)

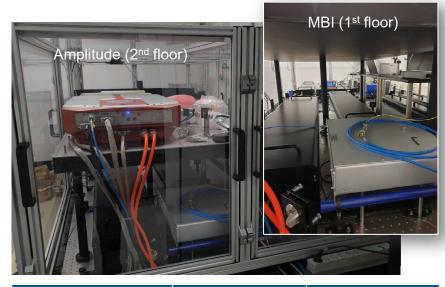
Lorentz Force (LF) detuning

- k₀ = 1.5 Hz(MV/m)⁻², 6x higher than for TESLA 9 cell ¹)
- LF detuning vs. E0 for each mode clearly point on weak half cell as reason, stiffeners are not satisfactory
- $\Delta f = 650$ Hz for $E_{acc} = 8$ MV/m, because of bandwidth of BW = 200 Hz tuning while changing gradient is essential


Helium pressure sensitivity: 155 Hz/mbar (stability of LHe machine is 0.2 mbar pk-pk)

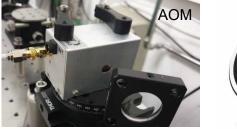
1) 0.25 Hz(MV/m)-2

Photocathode laser(s)


- UV laser operated at constant power (thermal equilibrium)
- UV laser power adjusted by attenuator (waveplate/polarizer)
- Fast chopping in UV (up to MHz) for e-beam setup by AOM (acousto optical modulator, Isomet M1365-aQ215-3)
- Laser transport equipped with the 2 fast shutters in a row (AOM and Uniblitz) for redundancy in machine safety

Operational experiences (selection)

- Main reason of failures is water (both infrastructure and chiller)
- Degradation of mirrors, lenses, waveplate/polarizer, conversion crystals within weeks of operation (depends on power density)
- Frequent maintenance and re-adjustment mandatory (1 FTE)

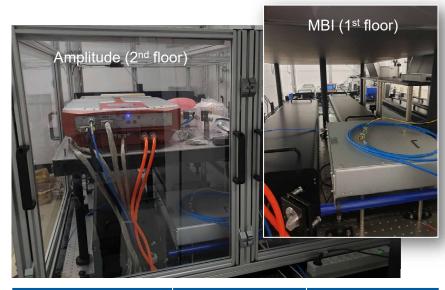


Parameter	New Laser ^{*)} (Amplitude)	Old Laser 2 (Max Born Institue)
4th harmonic	257 nm	262 nm
Oscillator	39 MHz, fiber	52 MHz, free space
Pulse rep. rate	0…1 MHz (divider of 39 MHz)	10500 kHz in 7 steps and 13 MHz
UV pulse energy	>10 µJ @ 100 kHz >2 µJ @ 1 MHz	5 µJ @ 100 kHz
UV pulse length, FWHM	up to 7 ps, variable	5 ps
jitter (10 Hz - 1 MHz)	70 fs	150 fs

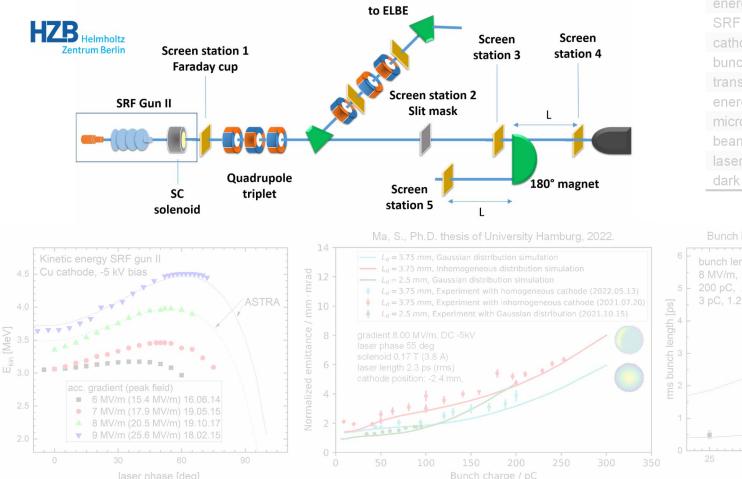
*) not ready for user beam, still issue with synchro-lock

Photocathode laser(s)

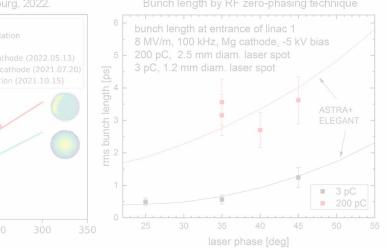
- UV laser operated at constant power (thermal equilibrium)
- UV laser power adjusted by attenuator (waveplate/polarizer)
- Fast chopping in UV (up to MHz) for e-beam setup by AOM (acousto optical modulator, Isomet M1365-aQ215-3)
- Laser transport equipped with the 2 fast shutters in a row (AOM and Uniblitz) for redundancy in machine safety

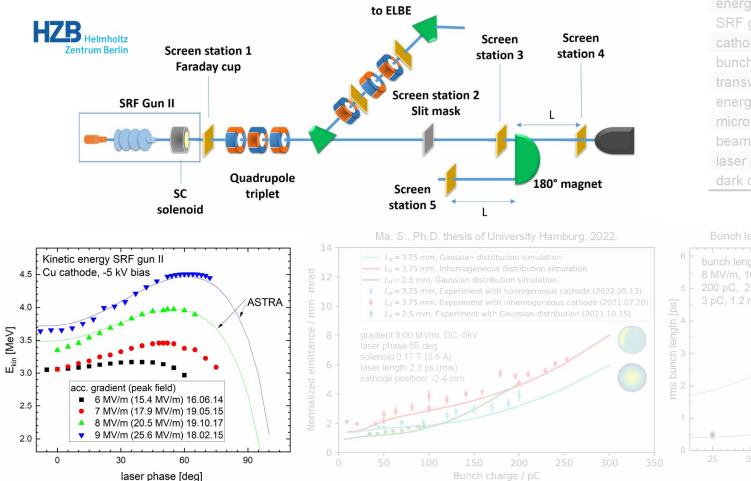


Operational experiences (selection)

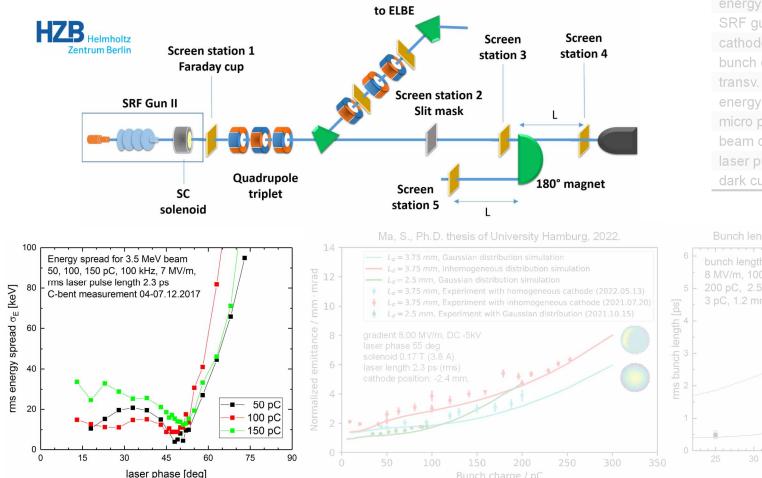

- Main reason of failures is water (both infrastructure and chiller)
- Degradation of mirrors, lenses, waveplate/polarizer, conversion crystals within weeks of operation (depends on power density)
- Frequent maintenance and re-adjustment mandatory (1 FTE)

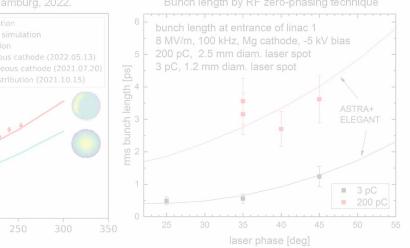
12 19.08.2023 Operational experience from 8 years of ELBE SRF gun II

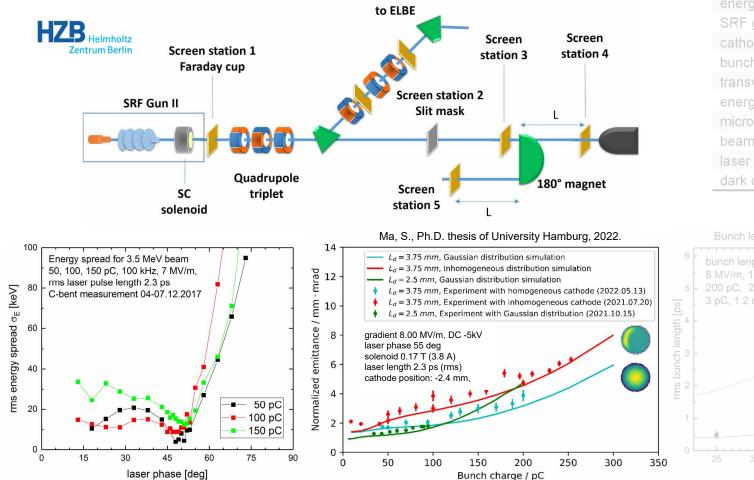



Parameter	New Laser ^{*)} (Amplitude)	Old Laser 2 (Max Born Institue)
4th harmonic	257 nm	262 nm
Oscillator	39 MHz, fiber	52 MHz, free space
Pulse rep. rate	0…1 MHz (divider of 39 MHz)	10500 kHz in 7 steps and 13 MHz
UV pulse energy	>10 µJ @ 100 kHz >2 µJ @ 1 MHz	5 µJ @ 100 kHz
UV pulse length, FWHM	up to 7 ps, variable	5 ps
jitter (10 Hz - 1 MHz)	70 fs	150 fs

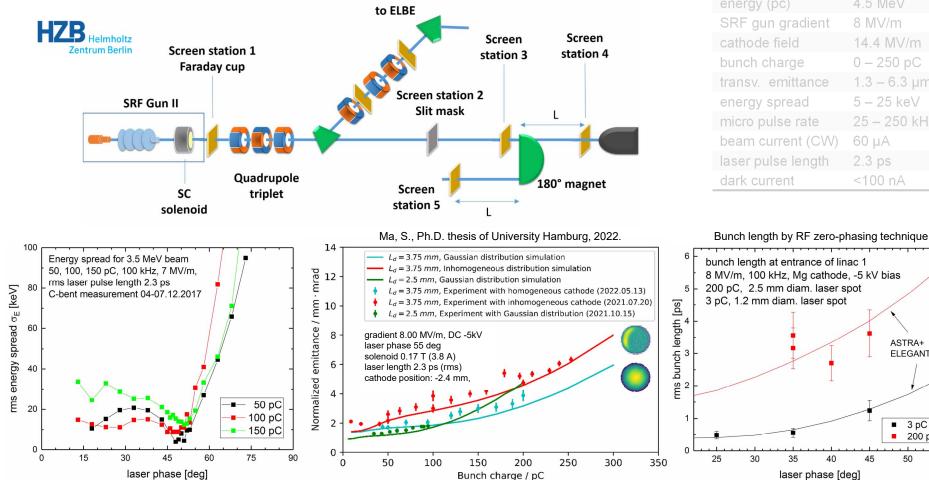
*) not ready for user beam, still issue with synchro-lock

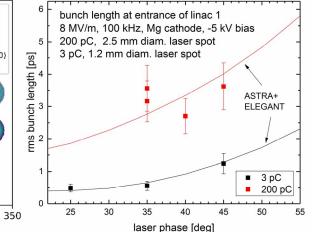

OP parameter	SRF gun II
energy (pc)	4.5 MeV
SRF gun gradient	8 MV/m
cathode field	14.4 MV/m
bunch charge	0 — 250 рС
transv. emittance	1.3 – 6.3 µm
energy spread	5 – 25 keV
micro pulse rate	25 – 250 kHz
beam current (CW)	60 µA
laser pulse length	2.3 ps
dark current	<100 nA




OP parameter	SRF gun II
energy (pc)	4.5 MeV
SRF gun gradient	8 MV/m
cathode field	14.4 MV/m
bunch charge	0 – 250 pC
transv. emittance	1.3 – 6.3 µm
energy spread	5 – 25 keV
micro pulse rate	25 – 250 kHz
beam current (CW)	60 µA
laser pulse length	2.3 ps
dark current	<100 nA

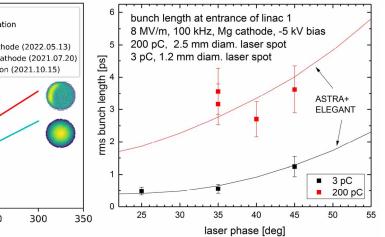
05.13) (05.13) (05.13) (05.13) (107.20) (15


OP parameter	SRF gun II
energy (pc)	4.5 MeV
SRF gun gradient	8 MV/m
cathode field	14.4 MV/m
bunch charge	0 — 250 рС
transv. emittance	1.3 – 6.3 µm
energy spread	5 – 25 keV
micro pulse rate	25 – 250 kHz
beam current (CW)	60 µA
laser pulse length	2.3 ps
dark current	<100 nA

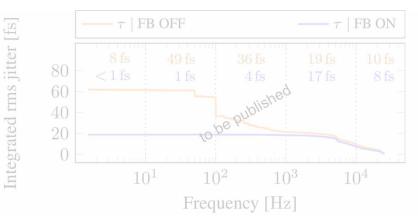


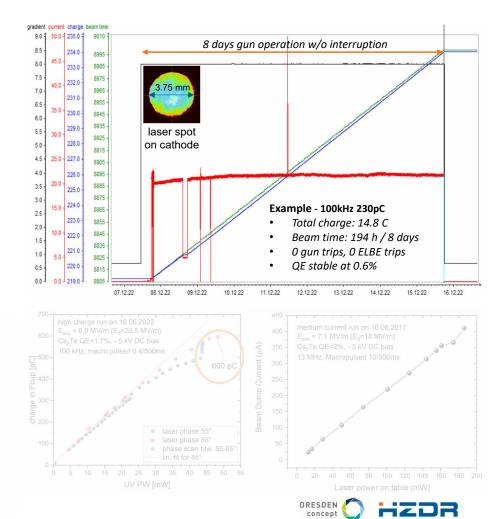
OP parameter	SRF gun II
energy (pc)	4.5 MeV
SRF gun gradient	8 MV/m
cathode field	14.4 MV/m
bunch charge	0 — 250 рС
transv. emittance	1.3 – 6.3 µm
energy spread	5 – 25 keV
micro pulse rate	25 – 250 kHz
beam current (CW)	60 µA
laser pulse length	2.3 ps
dark current	<100 nA

Beam performance


OP parameter	SRF gun II
energy (pc)	4.5 MeV
SRF gun gradient	8 MV/m
cathode field	14.4 MV/m
bunch charge	0 — 250 рС
transv. emittance	1.3 – 6.3 µm
energy spread	5 – 25 keV
micro pulse rate	25 – 250 kHz
beam current (CW)	60 µA
laser pulse length	2.3 ps
dark current	<100 nA

Beam performance

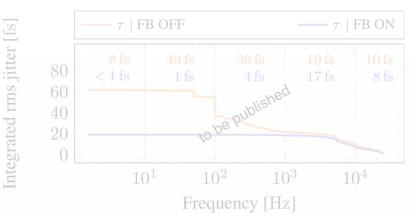

OP parameter	SRF gun II
energy (pc)	4.5 MeV
SRF gun gradient	8 MV/m
cathode field	14.4 MV/m
bunch charge	0 – 250 pC
transv. emittance	1.3 – 6.3 µm
energy spread	5 – 25 keV
micro pulse rate	25 – 250 kHz
beam current (CW)	60 µA
laser pulse length	2.3 ps
dark current	<100 nA

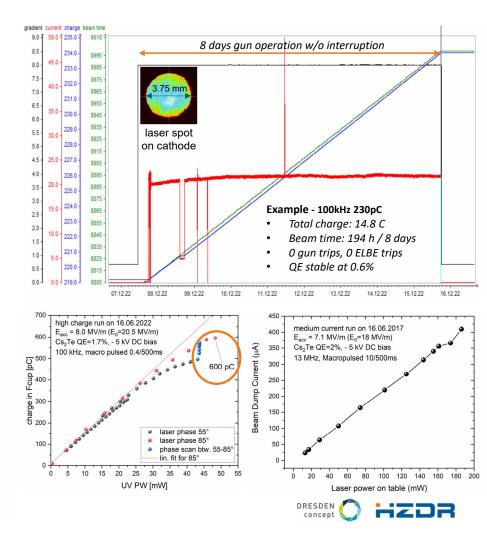


Operational performance (selection)

- Reliable operation over days w/o any trips
- Typ. 1800h per year, no reason not to provide more
- 600 pC, max. bunch charge 1.5 m downstream into Fcup limited by cavity gradient, 1nC possible with E0=30 MV/m
- 200 400 µA CW accelerated 5 m downstream into dump no reason not to demonstrate 1 mA (except machine time)
- Measured timing jitter (by BAM system) near user end station is 62 fs w/o and 19 fs with beam-based feedback

A. Maalberg, M. Kuntzsch, K. Zenker and E. Petlenkov, "Regulation of electron bunch arrival time for a continuous-wave linac: Exploring the application of the H2 mixed-sensitivity problem", *Phys. Rev. Accel. Beams*, under review.

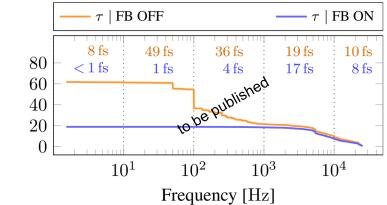


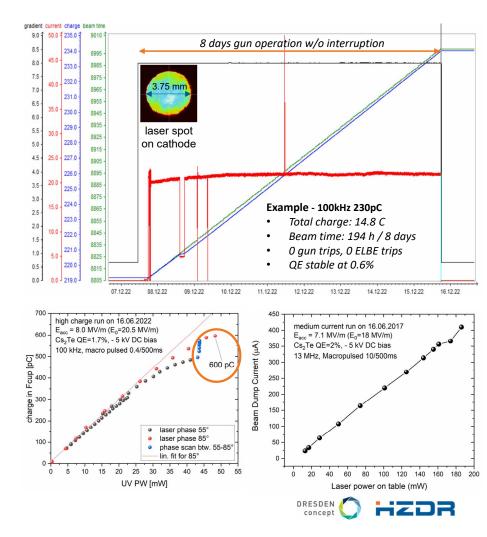


Operational performance (selection)

- Reliable operation over days w/o any trips
- Typ. 1800h per year, no reason not to provide more
- 600 pC, max. bunch charge 1.5 m downstream into Fcup limited by cavity gradient, 1nC possible with E0=30 MV/m
- 200 400 µA CW accelerated 5 m downstream into dump no reason not to demonstrate 1 mA (except machine time)
- Measured timing jitter (by BAM system) near user end station is 62 fs w/o and 19 fs with beam-based feedback

A. Maalberg, M. Kuntzsch, K. Zenker and E. Petlenkov, "Regulation of electron bunch arrival time for a continuous-wave linac: Exploring the application of the H2 mixed-sensitivity problem", *Phys. Rev. Accel. Beams*, under review.





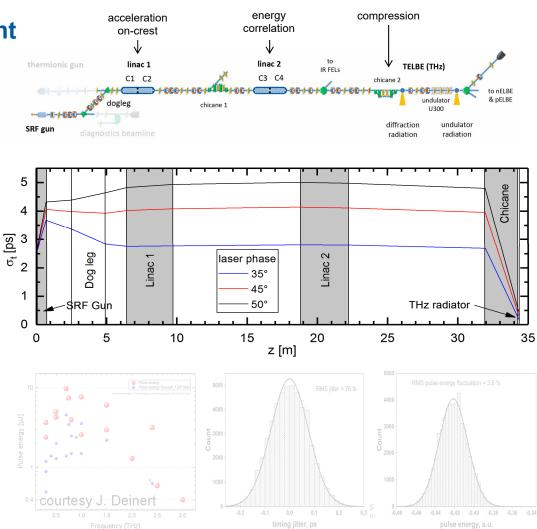
Operational performance (selection)

- Reliable operation over days w/o any trips
- Typ. 1800h per year, no reason not to provide more
- 600 pC, max. bunch charge 1.5 m downstream into Fcup limited by cavity gradient, 1nC possible with E0=30 MV/m
- 200 400 µA CW accelerated 5 m downstream into dump no reason not to demonstrate 1 mA (except machine time)
- Measured timing jitter (by BAM system) near user end station is 62 fs w/o and 19 fs with beam-based feedback

A. Maalberg, M. Kuntzsch, K. Zenker and E. Petlenkov, "Regulation of electron bunch arrival time for a continuous-wave linac: Exploring the application of the H2 mixed-sensitivity problem", *Phys. Rev. Accel. Beams*, under review.

Integrated rms jitter [fs]

THz – most demanding experiment


 $E_{THz} \sim F(\omega, \sigma_z) N^2$

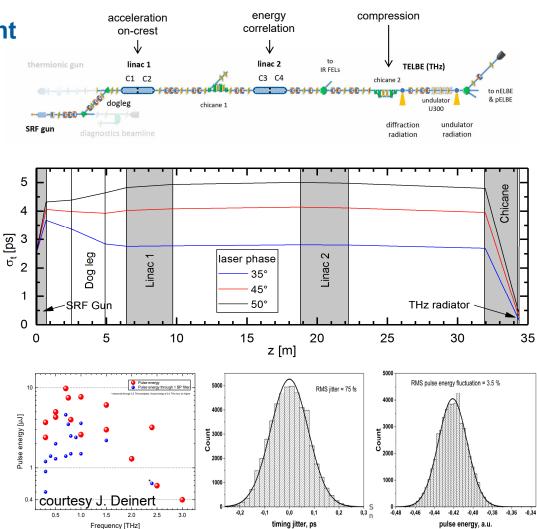
- SRF gun delivers 4 MeV beam with 200 250 pC
- CW operation with 10, 50, 100, 250 kHz rep.-rate
- acceleration to 26 MeV, imprint of correlated energy spread and compression to some 100 fs
- THz radiation with frequencies 0.05 2.5 THz
- pulse energies $\leq 10 \mu J$ ($\leq 1 THz$), few μJ ($\leq 2.5 THz$)
- pulse energy fluctuations are typ. 3.5 %
- synchronization to external systems typ. 75 fs (including the laser jitter, w/o feedback)

100% of all THz shifts and up to 40% of all ELBE user shifts (4500h w/o MD) are served by SRF gun

J. Teichert et al. PRAB 24, 033401 (2021)

15 19.08.2023 Operational experience from 8 years of ELBE SRF gun II

THz – most demanding experiment

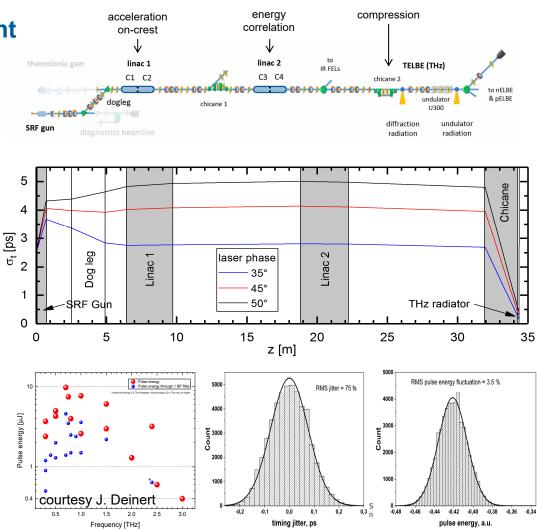

 $E_{THz} \sim F(\omega, \sigma_z) N^2$

- SRF gun delivers 4 MeV beam with 200 250 pC
- CW operation with 10, 50, 100, 250 kHz rep.-rate
- acceleration to 26 MeV, imprint of correlated energy spread and compression to some 100 fs
- THz radiation with frequencies 0.05 2.5 THz
- pulse energies $\leq 10 \mu J$ ($\leq 1 THz$), few μJ ($\leq 2.5 THz$)
- pulse energy fluctuations are typ. 3.5 %
- synchronization to external systems typ. 75 fs (including the laser jitter, w/o feedback)

100% of all THz shifts and up to 40% of all ELBE user shifts (4500h w/o MD) are served by SRF gun

J. Teichert et al. PRAB 24, 033401 (2021)

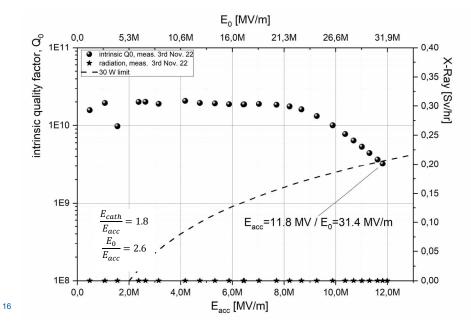
15 19.08.2023 Operational experience from 8 years of ELBE SRF gun II


THz – most demanding experiment

 $E_{THz} \sim F(\omega, \sigma_z) N^2$

- SRF gun delivers 4 MeV beam with 200 250 pC
- CW operation with 10, 50, 100, 250 kHz rep.-rate
- acceleration to 26 MeV, imprint of correlated energy spread and compression to some 100 fs
- THz radiation with frequencies 0.05 2.5 THz
- pulse energies $\leq 10 \mu J$ ($\leq 1 THz$), few μJ ($\leq 2.5 THz$)
- pulse energy fluctuations are typ. 3.5 %
- synchronization to external systems typ. 75 fs (including the laser jitter, w/o feedback)

100% of all THz shifts and up to 40% of all ELBE user shifts (4500h w/o MD) are served by SRF gun


J. Teichert et al. PRAB 24, 033401 (2021)

Outlook - SRF Gun III

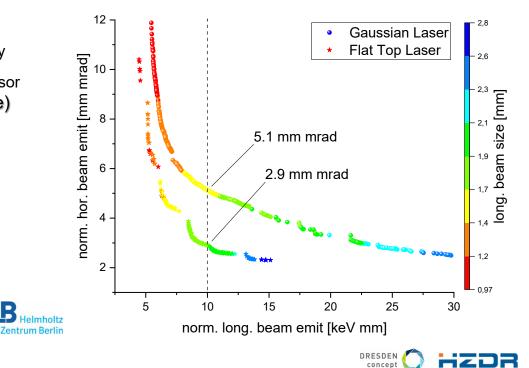
Goal: (re-)establishing 30 MV/m of old SRF gun I by using HZB infrastructure

- high pressure rinsing (HPR) with special nozzle for gun cavities \checkmark
- cavity cleanroom assembly of all auxiliaries for vertical test \checkmark
- achieved 30 MV/m in small test dewar in HoBiCaT bunker \checkmark
- in parallel, the cryomodule was completed and cold tested \checkmark
- cold mass cleanroom assembly at HZB or HZDR "just" missing

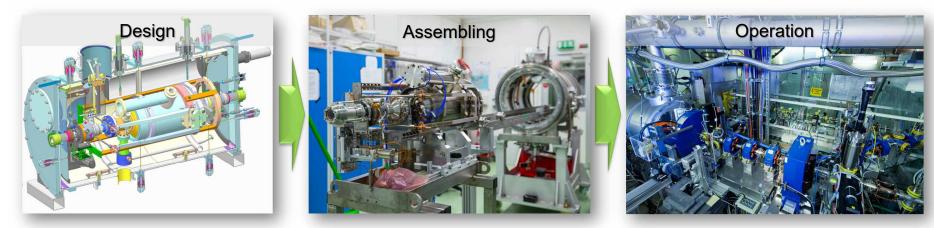
cavity ready for vertical test

HPR with special qun nozzle

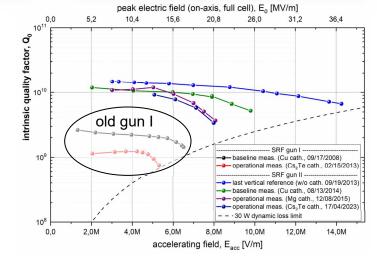
HZB Zentrum Berlin



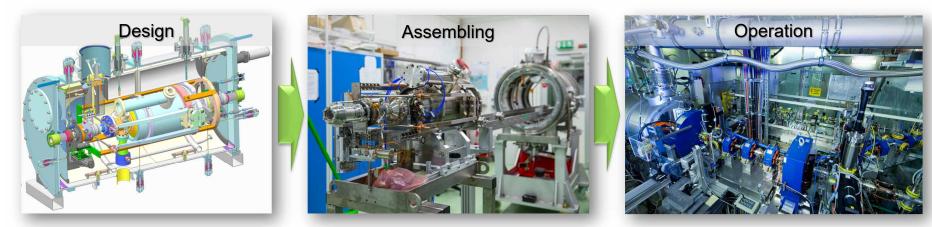
SRF gun III cold test in the bunker (w/o cavity)


Outlook - SRF Gun III for 1nC

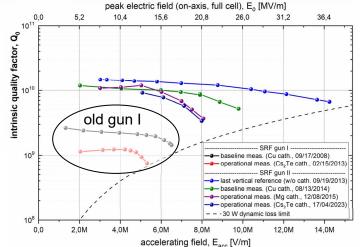
- ASTRA tracking and Pareto optimization for transverse and long. emittance at 4 m, beam size ≤ 5mm, no particle loss
- Many knobs: solenoid field, long. laser pulse length, transverse laser size (top hat), cathode position (-4 to 0 mm), RF phase (10°-90°), DC field (±5kV); only solenoid position (0.7 m) and cavity field (30 MV/m) are fixed
- 50% higher gradient would allow 5 times higher bunch charge at the same transverse emittance and ideally up to 25 times higher THz pulse energy
- 1 nC in CW is basic requirement for ELBE successor DALI (Dresden Advanced Light Infrastructure)



SPEA2 algorithm provided by J. Völker and E. Panofski Eva Panofski, *Beam Dynamics and Limits for High Brightness, High Average Current Superconducting Radiofrequency (SRF) Photoinjectors*, Humboldt-Universität Berlin, thesis, 2019.


Summary

- >15 yrs. of experience in designing, assembling and operation of an SRF gun including save and particle-free cathode exchange
- 30 cathodes (2 Cu, 12 Mg, 16 Cs₂Te) w/o cavity degradation
- On average per cathode 15 C in 500 hr beam time, ¼ year in gun
- Very reliable and stable user operation (1800h per year)
- No show stopper but questions about cathode / cavity interplay


Summary

- >15 yrs. of experience in designing, assembling and operation of an SRF gun including save and particle-free cathode exchange
- 30 cathodes (2 Cu, 12 Mg, 16 Cs₂Te) w/o cavity degradation
- On average per cathode 15 C in 500 hr beam time, ¼ year in gun
- Very reliable and stable user operation (1800h per year)
- No show stopper but questions about cathode / cavity interplay

18 19.08.2023 Operational experience from 8 years of ELBE SRF gun II

