Impact of Medium Temperature Heat Treatments on the Magnetic Flux Expulsion Behavior of SRF Cavities

J. C. Wolff*1,2, J. Eschke1, W. C. A. Hillert2, A. Goessel3, K. Kasprzak3, D. Reschke1, L. Steder1, L. Trelle1, M. Wiencek1
1 Deutsches Elektronen Synchrotron DESY, Germany
2 University of Hamburg, Germany

Experimental Goal
1. Investigate magnetic flux expulsion behavior as a function of:
 ➢ cool down velocity \(v_c \)
 ➢ spatial temperature gradient \(\nabla T \)
 for the large-grain test cavity 1DE26 before- and after mid-T heat treatment for assumed technical extrema of:
 - 5 K/h and -20 K/h for \(v_c \)
 - 0 \(\Delta T/l \) and 4 \(\Delta T/l \) for \(\nabla T \)
to maximize likelihood of significant measurement results
 (\(\Delta l \) represents the distance between used reference thermocouples located at the upper and lower iris of 225 mm)
2. Study the impact of mid-T heat treatment on sensitivity to trapped magnetic flux

Setup Characteristics
➢ Ensure consistent test conditions
➢ Setup operated in an ambient field of 10 \(\mu T \)
➢ Spatial mapping of magnetic flux density by 621 AMR-sensors
➢ Based on HZB approach [1,2]

Setup Limitations
➢ Inclined \(T \) transition due to an asymmetrical helium flow
➢ Asymmetrical expulsion of magnetic flux

Magnetic Flux Expulsion Behavior (large-grain material)
➢ No impact of cool down velocity & mid-T heat treatment on expulsion behavior
➢ Large impact of spatial temperature gradient:
 - 0 \(\Delta T/l \): 26 % of magnetic flux expelled
 - 4 \(\Delta T/l \): 69 % of magnetic flux expelled

Conclusions
➢ No significant impact of cool down velocity and mid-T heat treatment on flux expulsion behavior of large grain cavity 1DE26 observed
➢ Large impact of spatial temperature gradient on flux expulsion behavior:
 0 \(\Delta T/l \): 26 % of mag. flux expelled; 4 \(\Delta T/l \): 69 % of mag. flux expelled
➢ Only sensitivity to trapped magnetic flux increased by a factor of five due to mid-T heat treatment:
 0 \(\Delta T/l \): 3.5 nΩ/μT(bef. mid-T) to 17.7 nΩ/μT(aft. mid-T); 4 \(\Delta T/l \): 3.1 nΩ/μT(bef. mid-T) to 15.7 nΩ/μT (aft. mid-T)

References

This work was supported by the Helmholtz Association within the topic Accelerator Research and Development (ARD) of the Matter and Technologies (MT) Program.

Experimental Setup

Sensitivity to Trapped Magnetic Flux S
➢ Increase of \(S \) by a factor of five after mid-T heat treatment:
 - 0 \(\Delta T/l \): 3.5 nΩ/μT to 17.7 nΩ/μT; 4 \(\Delta T/l \): 3.1 nΩ/μT to 15.7 nΩ/μT

\[S = \frac{\Delta P_{\text{trap}}}{P_{\text{trap}}} \]

\(\Delta P_{\text{trap}}, \Delta S : \text{Increase of} R_s \text{ per unit of trapped magnet. flux} \]

The surface resistance \(R_s \) given in the legend was obtained by cubic interpolation for an accelerating gradient of 4 MV/m.

References