

OPTIMISATION OF NIOBIUM THIN FILM DEPOSITION PARAMETERS FOR SRF CAVITIES

Daniel Seal^{†1,2}, G. Burt^{1,2}, J. Conlon^{1,3}, O.B. Malyshev^{1,3}, K. Morrow^{1,3}, R. Valizadeh^{1,3} ¹Cockcroft Institute, UKRI/STFC Daresbury Laboratory, WA4 4AD, Warrington, UK ²Engineering Department, Lancaster University, LA1 4YW, Lancaster, UK Schoolof ³ASTeC, UKRI/STFC Daresbury Laboratory, WA4 4AD, Warrington, UK Engineering +daniel.seal@cockcroft.ac.uk

Bulk Nb to TFs

Bulk Nb SRF cavities are close to reaching their theoretical limits in terms of accelerating gradients and Q factors. As a result, there is a push to develop cavities using either TF Nb or alternative higher critical temperature (T_c) superconductors (e.g. Nb₃Sn, NbTiN, V₃Si). Given an increasing cost of LHe, electricity and accelerator infrastructure, Cu cavities coated with thin film (TF) superconductors (SC) provide sustainable alternatives to bulk Nb cavities.

Why Nb/Cu?

Compared to bulk Nb, Nb/Cu leads to a reduction in material/production costs, more easily machinable, higher thermal conductivities, less sensitivity to trapped magnetic flux, operation at 4.2 K with lower BCS resistance (R_{BCS}).

THIN FILM OPTIMISATION

Requirement for quick optimisation studies with RF:

TF development begins on planar samples – low cost & easy to analyse. Several DC facilities exist at Daresbury Laboratory to measure RRR, T_c and field of full flux penetration (B_{fo}), but these cannot analyse behaviour under RF. TF optimisation can now be performed rapidly with a new RF facility to understand TF behaviour and any correlations with DC & surface analysis results.

Optimisation on planar samples: 1 – substrate preparation, 2 – PVD deposition, 3 – RF characterisation, 4 – DC characterisation, 5 – surface analysis

Split 6 GHz cavity

1.3 GHz cavity

SUSPB023

İFAST

Lancaster University

RF CHOKE CAVITY FACILITY

A recently commissioned high-throughput RF test stand allows for rapid TF sample surface resistance (R_s) measurements every 2 days. Choke cavity & *H*-field.

Cavity & sample

-4.2 K

▲-5 K

-∎-7 K

40

+S_a

+S

40

30

30

Planar	RF optim	isation	with	chok	e cavity	prior to QPR
			_			

Parameter	Present	Upgraded	Q
	Choke	Choke	

SAMPLE PREPARATION

. Diamond t

HiPIMS deposition parameters: 6 Nb/Cu samples (thickness \approx 3 µm) deposited with planar magnetron and variable substrate heater current (temperature)

	Deposition Parameter	Value
	Base pressure (mbar)	10 ⁻⁹
	Initial heating time (h)	20
	Initial heating current (A)	0 - 35
	Pressure with heating (mbar)	10-7
	Average target power (W)	400
	Pulse duration (µs)	80
	Pulse frequency (kHz)	1
urn Cu for	Discharge gas	Kr
٦r	Deposition pressure (mbar)	2 x 10 ⁻³
t substrate		
osition for	Substrate heater current (A)	0 - 35
nrs sample	Substrate temperature (°C)	RT to ≈ 650
	Deposition time (h)	4.5

1			
	T	1	

Sample – 90 to 130 mm TF/Cu.

thermally &		CHURE	CHOKE		
physically isolated	Sample rate	3/v	3/week		
with 1 mm gap –	Cooling	Cryocooler		LHe	
simple R _s	B _{sample}	1.2 mT	15 mT	120 mT	
measurements via	T _{sample}	> 4 K		> 1.9 K	
KF-DC	f_0	7.8 GHz		400-1300 MHz	
compensation.	Capability	$R_{\rm s}$ ($T_{\rm sam}$	_{ple}), R _s (B _{sampl}	ole), ∆f (T _{sample})	

1. Surface resistance as a function of sample temperature, $T_s (\sigma_{Rs} \approx 15\%)$. **2.** Surface resistance as a function of substrate heater current (RT to $\approx 650 \,^{\circ}$ C) - $T_s = 4.2 \,\text{K}, 5 \,\text{K}$ and 7 K.

DISCUSSION

- 1. Lowest R_s = 19.9 ± 2.7 µΩ for 30 A (≈ 500 − 550 °C).
- 2. Decrease in R_s from 0 A (room temperature) to 30 A. Increases at 35 A ($\approx 600 - 650$ °C).
- 3. Lowest Δf for 30 A sample ($T_c \approx 9.2$ K), highest Δf for 10 A sample ($T_c \approx 8.2$ K).
- 4. Increase in surface roughness after deposition ($S_a = 11.8 10.8$ 44.3 nm, *S*_a = 29.6 – 205.9 nm). Highest for the 30 A sample - roughness unlikely to be the dominant influence on R_{s} .

- Further analysis to be performed: DC magnetic field penetration, RRR, T_c, surface analysis
- Quick optimisation of deposition parameters (3 samples/week) possible, not limited to Nb.
- **Best Nb deposition parameters:**
 - QPR higher-field measurements at three frequencies
 - Split 6 GHz cavity cavity-like geometry with easy film inspection
 - Baseline for multilayers (e.g. Nb/AlN/NbTiN)

3. Resonant frequency shift (Δf) as a function of sample temperature - choke cavity temperature kept constant. Approximate T_c of samples can be inferred from where Δf levels off.

4. Surface roughness as a function of sample **temperature** $-S_a$ is the mean arithmetic roughness and S_{α} is the root mean square roughness. Measured with a white light interferometer. $S_a = 2-3$ nm and $S_a = 5-6$ nm before deposition.

CONCLUSIONS

With a recently developed high throughput RF facility at Daresbury Laboratory, it is now possible for the lab to characterise thin films with the primary aim of optimising deposition parameters for peak RF performance. A study investigating the effect of substrate temperature during deposition of Nb/Cu planar samples has been performed with the focus being on low-field RF performance. The sample deposited with a heater current of 30 A (\approx 500 – 550 °C) performed best with the lowest R_s. A worn out Nb target meant that no further depositions were possible; however, more samples will be deposited with a new Nb target for comparison. All samples will be analysed further by measuring DC superconducting properties & surface properties.

ACKNOWLEDGEMENTS

This work has been supported by: the IFAST collaboration which has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730. The authors wish to acknowledge the support received by members of CI and ASTeC, namely T. Sian, H. Marks, N. Leicester, L. Smith and A. Vick. The author also wish to acknowledge electronics work carried out by A. Palmer and A. Wootten. The authors also acknowledge work carried out by the team at STFC RAL Space and staff in the Engineering Technology Centre at Daresbury Laboratory. D. Seal would like to thank UKRI for his PhD funding.