Paper | Title | Page |
---|---|---|
TUCAA02 |
EIC Project Overview and Related SRF Technologies | |
|
||
Funding: This is authored by Jefferson Science Associate, LLC under U. S. DOE Contract No. DE-AC05-06OR23177. The Electron-Ion Collider (EIC), with a range of center-of-mass energies from 20 to 140 GeV, will enable experimental nuclear physics in the gluon-dominated regime with luminosity up to 1034 cm2 per second. The project chose to employ SRF technology for several accelerating and crab cavity geometries used throughout the accelerator complex to achieve the EIC¿s energy and luminosity goals. This presentation will review the current status of the EIC, the SRF technology used in the accelerator complex and current status of SRF R&D. The discussion will share EIC’s fundamental high-power coupler design & performance, high-power HOM power handling hardware, SRF elliptical and crab cavity designs and recent experimental results. |
||
![]() |
Slides TUCAA02 [3.784 MB] | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTB068 | EIC 197 MHz Crab Cavity RF Optimization | 584 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under U.S. DOE K No. DE-SC0012704, by Jefferson Science Associates, LLC under U.S. DOE K No. DE-SC0002769, and by DOE K No. DE-AC02-76SF00515. Crab cavities, operating at 197 MHz and 394 MHz respectively, will be used to compensate the loss of luminosity due to a 25 mrad crossing angle at the interaction point in the Electron Ion Collider (EIC). Both crab cavities are of the RF Dipole (RFD) shape. To meet the machine design requirements, there are a few important cavity design considerations that need to be addressed. First, to achieve stable cavity operation at the design voltages, cavity geometry details must be optimized to suppress potential multipacting. Incorporating strong HOM damping in the cavity design is required for the beam stability and quality. Furthermore, due to the finite pole width, the multipole fields, especially the sextupole and the decapole terms, need to be minimized to maintain an acceptable beam dynamic aperture. This paper will present the RF optimization details of the 197 MHz cavity. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB068 | |
About • | Received ※ 16 June 2023 — Revised ※ 29 June 2023 — Accepted ※ 03 July 2023 — Issue date ※ 08 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB061 | Pre-Installation Performance of the RHIC 56 MHz Superconducting System | 718 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under contract No. DE-SC0012704 with the U.S. Department of Energy. Pre-installation test results for the RHIC 56 MHz superconducting RF system are presented here. The 56 MHz quarter-wave resonator achieved a stable accelerating potential of 1.1 MV with 13 W of RF loss at 4.5 K demonstrating its viability for increasing the luminosity of sPHENIX collisions. The new 120 kW travelling wave fundamental mode damper and dual 6 kW combined-function fundamental power couplers perform as expected at 3 kW but remain to be operated with the expected ~40 times greater power achievable with the RHIC sPHENIX beams. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB061 | |
About • | Received ※ 15 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 02 July 2023 — Issue date ※ 17 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |