Author: Omet, M.
Paper Title Page
MOPMB033 Efforts to Suppress Field Emission in SRF Cavities at KEK 167
 
  • M. Omet, H. Araki, T. Dohmae, H. Ito, R. Katayama, K. Umemori, Y. Yamamoto
    KEK, Ibaraki, Japan
 
  Our main objective is to achieve as high as possible quality factors Q₀ and maximal accelerating voltages Eacc within 1.3 GHz superconducting radio frequency (SRF) cavities. Beside an adequate surface treatment, key to achieve good performance is a proper assembly in the clean room prior cavity testing or operation. In this contribution we present the methods and results of our efforts to get a better understanding of our clean room environment and the particulate generation caused during the assembly work. Furthermore, we present the measures taken to suppress filed emission, followed by an analysis of vertical test results of the last six years.  
poster icon Poster MOPMB033 [1.532 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB033  
About • Received ※ 14 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 02 September 2023 — Issue date ※ 02 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB049 Horizontal Test Results of 1.3 GHz Superconducting RF Gun #2 at KEK 540
 
  • T. Konomi, K. Hara, Y. Honda, K. Hosoyama, H. Inoue, E. Kako, Y. Kondo, M. Masuzawa, M. Omet, T. Takatomi, A. Terashima, K. Tsuchiya, R. Ueki, K. Umemori, X. Wang
    KEK, Ibaraki, Japan
 
  Superconducting radio-frequency (SRF) electron guns are attractive for delivery of beams at a high bunch repetition rate with a high accelerating field. KEK has been developing the SRF gun to demonstrate basic performance. The SRF gun consists of 1.3 GHz and 1.5 cell SRF gun cavity and K2CsSb photocathode coated on 2K cathode plug. In the vertical test, the surface peak electric field and the surface peak magnetic field reached to 75 MV/m and 170 mT respectively. The SRF gun was installed to horizontal multipurpose cryostat equipped with a superconducting solenoid, photocathode preparation chamber and beam diagnostic line. The results showed the peak surface electric field degraded to 42 MV/m. We suspect that cavity was contaminated during assembly. In this presentation, we will present the high gradient performance in vertical and horizontal test and individual test for each beam line components.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB049  
About • Received ※ 24 June 2023 — Revised ※ 28 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 15 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)