Paper | Title | Page |
---|---|---|
MOPMB042 | Evaluation of Flux Expulsion and Flux Trapping Sensitivity of SRF Cavities Fabricated from Cold Work Nb Sheet with Successive Heat Treatment | 197 |
SUSPB015 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: The work is partially supported by DOE HEP under Awards No. DE-SC 0009960. This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The main source of RF losses leading to lower quality factor of superconducting radio-frequency cavities is due to the residual magnetic flux trapped during cool-down. The loss due to flux trapping is more pronounced for cavities subjected to impurities doping. The flux trapping and its sensitivity to rf losses are related to several intrinsic and extrinsic phenomena. To elucidate the effect of re-crystallization by high temperature heat treatment on the flux trapping sensitivity, we have fabricated two 1.3 GHz single cell cavities from cold-worked Nb sheets and compared with cavities made from standard fine-grain Nb. Flux expulsion ratio and flux trapping sensitivity were measured after successive high temperature heat treatments. The cavity made from cold worked Nb showed better flux expulsion after 800 C/3h heat treatment and similar behavior when heat treated with additional 900 C/3h and 1000 C/3h. In this contribution, we present the summary of flux expulsion, trapping sensitivity, and RF results. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB042 | |
About • | Received ※ 19 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 25 June 2023 — Issue date ※ 04 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMB045 | Quench Detection in a Superconducting Radio Frequency Cavity with Combined Temperature and Magnetic Field Mapping | 211 |
SUSPB016 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 Local dissipation of rf power in SRF cavities create so called ’hot-spots’, primary precursors of cavity quench driven by either thermal or magnetic instability. These hot spots are may be detected by a temperature mapping system, and a large increase in temperature on the outer surface is detected during cavity quench events. Here, we have used combined magnetic and temperature mapping systems using anisotropic magneto-resistance sensors and carbon resisters to locate the hot spots and areas with high trapped flux on a 3 GHz single-cell Nb cavity during the rf tests at 2 K. The effect of global and localized flux trapping on the rf performance will be presented. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB045 | |
About • | Received ※ 19 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 12 August 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUIXA01 |
Understanding the Field and Frequency Dependence of Rf Loss in SRF Cavities | |
|
||
Funding: This is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05- 06OR23177. SRF cavities subjected to heat treatment below 200 °C in the presence of nitrogen showed an improvement in quality factor while maintaining an accelerating gradient above 25 MV/m. Here, we report the rf performance of several single-cell superconducting radio frequency cavities with frequency ranging from 0.75 - 3.0 GHz subjected to low temperature heat treatment in nitrogen environment. The cavities were treated at temperature 120 - 175 oC for 24 - 48 hours in low partial pressure of ultra-pure nitrogen gas. The improvement in Q₀ with Q-rise was observed when nitrogen gas was injected ~300 °C during the furnace treatment. The surface modification was confirmed by the change in electronic mean free path and near surface elemental analysis by SIMS. The field dependence of the rf losses is strongly correlated to the cavity frequency. The analysis of experimental data with available theoretical models as well as comparison with similar study on high temperature nitrogen doped cavities will be presented. |
||
![]() |
Slides TUIXA01 [4.416 MB] | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB052 | Temperature, RF Field, and Frequency Dependence Performance Evaluation of Superconducting Niobium Half-Wave Coaxial Cavity | 691 |
|
||
Funding: This is authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05- 06OR23177 Recent advancement in superconducting radio frequency cavity processing techniques, with diffusion of impurities within the RF penetration depth, resulted in high quality factor with increase in quality factor with increasing accelerating gradient. The increase in quality factor is the result of a decrease in the surface resistance as a result of nonmagnetic impurities doping and change in electronic density of states. The fundamental understanding of the dependence of surface resistance on frequency and surface preparation is still an active area of research. Here, we present the result of RF measurements of the TEM modes in a coaxial half-wave niobium cavity resonating at frequencies between 0.3 - 1.3 GHz. The temperature dependence of the surface resistance was measured between 4.2 K and 1.6 K. The field dependence of the surface resistance was measured at 2.0 K. The baseline measurements were made after standard surface preparation by buffered chemical polishing. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB052 | |
About • | Received ※ 18 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 20 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |