MECHANICAL PROPERTIES OF DIRECTLY SLICED MEDIUM GRAIN NIOBIUM FOR 1.3 GHZ SRF CAVITY

A. Kumar, T. Saeki, T. Dohmae, S. Michizono, M. Yamanaka, Y. Watanabe, K. Abe, A. Yamamoto, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan N. Lannoy, A. Fajardo, ATI Specialty Alloys and Components, Albany, Oregon, USA G.R. Myneni, Jefferson Laboratory, Newport News, Virginia, USA / BSCE Systems, Yorktown, Virginia, USA

Introduction

□ ILC-250 is an electron-positron collider that requires 7800 1.3 GHz SRF cavities. □ The TDR is already published but the cost of its construction is a major hurdle. High purity Niobium (costly) is used to manufacture 9-Cell 1.3 GHz SRF cavity.

LG Nb

Results and Discussion

- ATI MG Nb billet was sliced into 65 disks and specimens from top two and bottom two disks were cut for tensile testing. □ All disks were chemically polished, specimens were wire EDM cut and then chemically polished again (see fig below).
- A set specimens were annealed at 800 °C for 3 hrs and the remaining ones were not, considered as in As-received condition (ASR).
- **Tensile tests were performed in room temperature and in liquid helium.**

FG Nb •Grain size < 50 μm •Isotropic mechanical properties •<u>High Cost</u>

Тор

Bottom

Forging and

annealing of Ingot

Direct-slicing

by wire-saw

Billet

•Grain size > 1 cm Anisotropic mechanical properties •Low Cost

Nb melting

Niobium ingot

(Raw material)

Sliced MG Nb disks

ATI MG Nb •Grain size - 200-300 µm, occasionally 1-2 mms grains. •New material, no data. •lsotropic properties? •Viable for SRF cavity? Cost reduction w.r.t FG Nb

0.5 mm Edge *ATI Mid. Radius 260 mm ϕ Grain Size: 0.2~0.3mm, with occasional grains as large as 1-2 mm

Fig. ATI MG Nb manufacturing and direct slicing with microscopic view of its grains

1		Table. ATI MG Nb specification					
Chemical composition		: H	0	N	RRR	Hardness (HV10	
of ATI MG Nb billet	, 	20 <3	3 <5	0 <20	> 300	~ 41	
	In	ppm					
		ATI billet					
	_ A `	TI bille	et	Y.S	Т.	S Elongation	
Mechanical properties	A Ic	TI bille	et n	Y.S [MPa]	ד. [M]	S Elongation Pa] [%]	
Mechanical properties measured by ATI		TI bille ocation	et n	Y.S [MPa] 56	T. [M] 14	SElongationPa][%]652	

#64		#65	
x = 50 = = = = 100 = = = − 100 = = − − 200 = = = 250 = = = 300 = 0	- 247	- 0 10 <u>11</u> 20	10 = m = = = 300 - •

LHe / Room temperature specimen

Specimen cut-out : R – room temperature, L – liquid helium temperature, X – Disk number, A – ASR.

• Mechanical properties are uniform throughout the billet with minimal deviation between annealed specimens (see table below). □ MG Nb initially thought to be isotropic, but it is likely anisotropic as grain size is non-homogeneous radially.

Table	e. Mechan	ical properties a	nt room temperatu	ure	Table. I	Mechanica	al properties in	ı liquid helium	
Position	Y.S	T.S	Elongation	E	Position	Y.S	T.S	Elongation	E
(sample no.)	[MPa]	[MPa]	[%]	[GPa]	(sample no.)	[MPa]	[MPa]	[%]	[GPa]
	·	<u>Annealed Spe</u> ci	men				ASR Specim	ien	
Тор (8)	$38.1^{\pm 0.5}$	122 ^{±5.7}	26.4 ^{±3.7}	$83.9^{\pm 8.2}$	Тор (3)	-	$381^{\pm 92.7}$	$1.3^{\pm0.1}$	$113.8^{\pm 9.1}$
Bottom (8)	$37.9^{\pm1.4}$	125 ^{±6.6}	22.5 ^{±3.9}	$89.3^{\pm 3.7}$	Bottom (3)	-	$375^{\pm 18.7}$	2.5 ^{±0.6}	$114.4^{\pm18}$
		ASR Specime	n l				€		
Тор (4)	$48.3^{\pm7.1}$	151 ^{±9.4}	17.7 ^{±4}	$86.1^{\pm 4.7}$		verage T.S	is approximat	ely 378 MPa.	
Bottom (4)	$41.1^{\pm 2.7}$	141 ^{±11.1}	22.9 ^{±5.6}	$86.8^{\pm8.1}$	 Y .	.S point co	uldn't be attai	ined for most s	pecimens.
60 50 - As-rec	15% drop	7% drop	uniform throu 180 – 160 – 140 –	Ighout		0 400 350 300	2 4	Stroke [mm] 6 8	10 12
40 30 20 10 0 0	0.2% Y.S line		Stress 120 - 100		R2-2A R64-2A R65-2A	250 200 150 100 50 0 0	0.2 0.4	0.6 0.8 1	

Mechanical properties	
massured by ATI	

Methodology

- Tensile tests are conducted to obtain mechanical properties of a material.
- □ Material is subjected to tension until failure to obtain Young's Modulus (E), 0.2% Yield Strength (Y.S), Tensile Strength (T.S) and Elongation.
- Shimadzu Autograph AG-5000C with Kyowa strain gages and Kyowa strain amplifier were used to conduct tests.
- Cross-head speed kept constant at 2 mm/min with strain rate of 4.4E-4 s⁻¹.

800

700

157

.43

146

160

140

Fig. Comparison of MG Nb with FG and LG Nb at room temperature (left) and in liquid helium (right) [*data from KEK internal tests (see poster WEPFDV005)]

Tesla-like

Fig. MG Nb room temperature properties w.r.t some known Nb material property requirements.

Conclusion

611

140

120

100

Generation of the specimen.

Given by the second sec alternate to the FG Nb for 1.3 GHz cavity manufacturing.

U Further studies are necessary to characterize the MG Nb mechanical properties at various annealing temperatures and to study the effect of direct slicing and other processes on its properties.