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Abstract

We report extensive numerical simulations on nonlinear

dynamics of a trapped elastic vortex under rf field, and its

dependence on electron mean free path �� . Our calculations

of the field-dependent residual surface resistance �� (�) take

into account the vortex line tension, the linear Bardeen-

Stephen viscous drag and random distributions of pinning

centers. We showed that �� (�) decreases significantly at

small fields as the material gets dirtier while showing field

independent behavior at higher fields for clean and dirty

limit. At low frequencies �� (�) increases smoothly with

the field amplitude at small � and levels off at higher fields.

The mean free path dependency of viscosity and pinning

strength can result in a nonmonotonic mean free path de-

pendence of �� , which decreases with �� at higher fields and

weak pinning strength.

INTRODUCTION

RF losses in SRF cavities are quantified by the quality

factor �0 which is inversely proportional to the surface re-

sistance ��. The surface resistance consists of two parts,

�� = ���� + �� , where ���� ∝ �2 exp(−Δ/�) comes

from thermally activated quasiparticles while �� quantified

a weakly-temperature dependent residual resistance. The

temperature independent �� can produce a large fraction of

the total dissipation about ≈ 20% for Nb and ≈ 50% for

Nb3Sn at 2 K and 1-2 GHz [1]. So the dependence of ��

on the magnetic field �, frequency � and mean free path

(��) is of much interest. The main contributions to �� comes

from trapped vortices generated during the cavity cool down

through the critical temperature �� at which the lower crit-

ical field ��1 (�) vanishes [2–10]. In this case even small

stray fields � > ��1 (�) such as unscreened earth magnetic

field can produce vortices in the cavity. During the subse-

quent cooldown to � ≃ 2 K some of these vortices exit the

cavity but some get trapped by the material defects such as

non-superconducting precipitates, network of dislocations

or grain boundaries.

Low-field rf losses of pinned vortices have been calcu-

lated by many authors [3, 11–15]. Nonlinear quasi-static

electromagnetic response of perpendicular vortices has been

addressed both for weak collective pinning [1], and strong

pinning [16, 17]. The extreme nonlinear dynamics of a

vortex under a strong ac magnetic field at which �� (�) de-

creases with � because of the decrease of vortex viscosity

with the velocity was addressed in [18]. The dissipation
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of vortices under a strong magnetic field in the cases of

mesoscopic pinning has been calculated recently by [19].

The nonlinear dynamics of the trapped vortex and the field

dependence �� can also be tuned by nonmagnetic impuri-

ties. Yet, the mean free path dependency of the rf power

generated by flexible oscillating vortex though a random

pinning potential remains poorly understood. In this work,

we calculate field dependent �� (�) and its dependencies

on the mean free path, frequency and the pinning strength

due to a trapped vortex line under rf magnetic field. Our

calculation take into account the vortex line tension, pinning

force, and Bardeen-Stephen viscous drag force.

DYNAMIC EQUATIONS

Consider a single vortex pinned by materials defects as

shown in the Fig. 1. Here the vortex is driven by the ac

Figure 1: A flexible vortex shown by the read line driven

by the rf surface current. The black dots represent pinning

centers such as non-superconducting precipitates. Green

arrows show vortex tip displacement on the YZ plane.

Meissner currents flowing in a thin layer of∼ � at the surface.

The ac displacement of the vortex R = [� (�, �), � (�, �)]
is mainly confined within the elastic skin depth [3] so that

the vibrating vortex segment interacts only with a few pins

while the rest of the vortex does not move. In this situa-

tion, the electromagnetic response of a perpendicular vortex

becomes dependent on its position and the statistical distribu-

tion of random pinning potentials. For instance, Fig.1 shows

a representative case of bulk pinning by small, randomly-

distributed non-superconducting precipitates. The dynamic

equation for trapped vortex shown in the Fig. 1 is given by:

�
�2

R

��2
+ �

�R

��
= �

�2
R

��2
− ∇� (�,R) − �̂ �� (�, �), (1)

�� (�, �) = (�0�/�)�−�/� sin��, (2)
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where � is the amplitude of the applied magnetic field with

the frequency � , � is the London penetration depth, � is the

vortex mass per unit length, � = �2
0
(ln � + 0.5)/4��0�

2 is

the vortex line energy, � = �/� is the Ginzburg-Landau (GL)

parameter, � is the coherence length, and � is the viscous

drag coefficient. Equations (1) and (2) represent a balance

of local forces acting on a curvilinear vortex: the inertial and

viscous drag forces in the left hand side are balanced by the

elastic, pinning and Lorentz forces in the right hand side. It

is assumed that: 1. The field is well below the superheating

field [20–23] so that the London model is applicable. 2.

The Magnus force causing a small Hall angle [24–26] is

negligible. 3. The low frequency rf field (ℏ� ≪ Δ) does not

produce quasiparticles, and the quasi-static London equa-

tions are applicable [27]. 4. Bending distortions of the

vortex are small so the linear elasticity theory [11, 28] is

applicable. We consider here the core pinning of vortices

[11,28,29] represented by a sum of pinning centers modeled

by the Lorentzian functions [30]:

� (�,R) = −
�
∑

�=1

��

1 + [(� − ��)2 + |R − R� |2]/�2
. (3)

Here, ��, �� and �� are the coordinates of the n-th pinning

center, and �� are determined by the gain in the condensa-

tion energy in the vortex core at the pin [11,28,29]. To take

into account dependencies of superconducting parameters

on the mean free path �� in Eqs. (1)-(3), we used �� ∝ �−1
�

and the conventional GL interpolation formulas � = �0Γ,

and � = �0/Γ, where Γ = (1 + �0/��)1/2. As a result, we

obtain the following dimensionless nonlinear partial differ-

ential equations for the local coordinates �(�, �) = �/�0 and

�(�, �) = �/�0:

� ¤� = �′′ −
�
∑

�=1

�� (�, r) (� − ��) + ���
−�/Γ, (4)

� ¤� = �′′ −
�
∑

�=1

�� (�, r) (� − ��), (5)

�′(0, �) = �′(0, �) = �′(�, �) = �′(�, �) = 0. (6)

Here the prime and the dot imply differentiation over the

dimensionless coordinate � = �/�0 and time � = � � , respec-

tively, the vortex mass is neglected. r = [�(�, �), �(�, �)],
and:

� =
�0Γ

4�� �

��0 �0
, �0 =

��10��0

��20�
2
0
�0

, (7)

�� = � sin(2��), � =
�0Γ�

���10

, (8)

�� =
�0Γ

5��0

�
[

1 + Γ2�2
0
(� − ��)2 + Γ2�2

0
|r − r� |2

]2
, (9)

��0 = 2�2
0��/�0, (10)

�0 = ln
�0

�0

+ 1

2
, � = ln

�0Γ
2

�0

+ 1

2
. (11)

where �0, �0, �0, ��0, ��10 = (�0/4��0�
2
0
) (ln �0 + 0.5) and

��20 = �0/2��0�
2
0

are the the penetration depth, coherence

length, vortex line energy, normal-state resistivity, lower

and upper critical fields in the clean limit, respectively. The

amplitude �� is related to the elementary pinning energy by

�� = ����, so that �� = 2�2��/��� = �0Γ
5��0/� as �� is

independent of mean free path [14].

We first estimate � and �� for a dirty Nb with �0 = �0 = 40

nm and �� = 1.4 meV/nm. Hence, �0 = �0 � / �0 ≈ 0.004,

and ��0 ≃ 0.04 at � = 1 GHz. Another essential parameter

is the decay length �� of oscillating bending disturbance

along the vortex line induced by a weak rf current at the

surface [3]

�� =

√

�

��
=

�
√

2��
, (12)

For Nb3Sn, we have �� ≃ 5.15� = 572 nm at 1 GHz. In

this case, dissipative oscillations of the elastic vortex extend

well beyond the rf field penetration depth.

The power of rf losses is obtained by summing contri-

butions of all vortices, � =
∑

�

∫

⟨� (�, �)���� (�, �)��⟩,
where �� (�, �) describes the �−th vortex and ⟨.., ⟩ means

time averaging (see Ref. [19]). It is convenient to define

a mean dimensionless power � = �/�0 and the surface

resistance �� per vortex:

� =
�0

�0Γ��

��
∑

�=1

∫ 1

0

��

∫ �

0

���
−� ¤�� (�, �)��, (13)

�� (�) = 2�(�)/�2, (14)

where �0 = �0 �0�0 and �� is the number of vortices. The

dimensionless �� is related to the surface resistance �� which

defines the power losses per unit area � = ���
2/2 by �� =

�0���□/�2
�10

. Here �□ = �0/�0 is a vortex areal density

producing a small induction �0 ≪ ��1. Using here �0 from

Eq. (7) and �0 = �0��10, we obtain:

�� =
��0�0

�0��20

�� . (15)

NUMERICAL RESULTS

We solved Eqs. (4)-(6) numerically using COMSOL [31].

In our simulations, a straight vortex was initially put in a par-

ticular pinning potential, and after r(�, �) relaxes to a stable

shape, the rf field was turned on. Then we run the program

until r(�, �) reaches steady-state oscillations after a transient

period �� ≲ 90/ � and use this solution to calculate �� . For

the case of bulk pinning � identical pins were distributed

randomly in a �× �� × �� box and Eqs. (4)-(6) were solved for

different mean free path, frequency, and rf field amplitudes,

making sure that �� and �� are adjusted in such a way that the

vortex always remains within the box during the rf period.

The mean pin density �� = �/��� �� was fixed through out

the simulations.

Shown in Fig. 2 are the dependencies of the surface resis-

tance �� (�) on the field amplitude � = �/��1 calculated for

different mean free path values at �0 = 2. Here �� is nearly
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Figure 2: Field dependence of �� (�) calculated for different

mean free path at �0 = 2 and ��0 = 0.04. Other parameters

are �/�0 = 10, �0 = 0.004, �� = 0.5�−3
0

.

independent of � at the higher field but develops a field

dependence at smaller field values. As the mean free path is

reduced �� (�) starts to decreases at small fields but increases

as the field increases. This low field behavior is because ��

decreases as �� decreases, and the vortex interacts with small

number of pins resulting in a lower surface resistance. The

�� (�) at higher fields is mostly limited by the vortex drag,

and the effect of pinning fluctuations weakens, resulting a

field-independent behavior. As �� decreases, the transition to

flux flow regime from pinning regime occurs at a higher field

because of higher pinning strength �� ∝ Γ
5. For instance this

transition occurs at � ∼ 0.1 for ��/�0 = 0.05 but � ∼ 0.04

for ��/�0 = 1. Curiously, �� (�) at ��/� = 0.05 is slightly

smaller than at ��/�0 = 0.1. Figure 3 shows the field depen-

Figure 3: Surface resistance �� (�) calculated for different

pinning strength ��0 = 0.04, 0.4 at �/�0 = 10, �0 = 0.004,

�� = 0.5�−3
0

, ��/�0 = 0.05 and �0 = 2.

dencies of �� (�) for bulk pinning calculated at two values

of the pinning parameter ��. The surface resistance �� (�)
for weak pinning with �� = 0.04, increases sharply above

� ≃ 0.1 due to the rapid transition from pinning regime to

flux flow regime while strong pinning with �� = 0.4 stays

approximately independent from the field as its depinning

field �� (��0 = 0.4) >> �� (��0 = 0.04) which can be cal-

culated approximately using �� ≃ (���/�2)
√
�� � ∼ 0.6 [19]

at ��0 = 0.4 and �� ∼ 0.06 for ��0 = 0.04. This restricts the

motion of the vortex and results in a lower �� (�) at strong

pinning.

Figure 4: Surface resistance �� (�) calculated for different fre-

quencies �0 = 0.004, 0.02, 0.04 at �/�0 = 10, �� = 0.5�−3
0

,

�0 = 2, ��/� = 1 and ��0 = 0.04.

Now we turn to the effect of pinning on the frequency

dependence on �� (�, �) shown in Fig. 4. At a high frequency

� = 0.4 the surface resistance �� (�) is nearly independent

of the field amplitude � because the rf losses are dominated

by the linear vortex drag. As the frequency decreases, a

linear dependence of �� (�) develops at small fields for which

pinning reduces �� (�). This result is consistent with the

calculations of �� (�) in a quasi-static limit [1].

Shown in Fig. 5 are the dependencies of the surface resis-

tance �� (��) on the mean free path calculated at two different

filed amplitude and �0. The peak in �� (��) shown in Fig. 5 (a)

results from the interplay of the decrease of the vortex vis-

cosity �(��) and increase of pinning strength �� as the vortex

line gets softer in the dirty limit. Such a bell-shaped depen-

dence of �� (��) has been observed experimentally [14, 15].

As the rf field amplitude � increases, the peak shifts to a

lower mean path value. However, the opposite situation oc-

curs at �0 = 10 shown in Fig. 5 (b). Here the dip in �� (��)
occurs because the pinning strength parameter �� increases

significantly as �� decreases, resulting in a lower �� at small

�� . At higher field � = 0.1 which exerts larger Lorentz forces,

pinning becomes less effective �� (��) shown in Fig. 5 (b)

becomes similar to �� (��) shown in Fig. 5 (a) at �0 = 2.

CONCLUSION

We presented the numerical simulations of nonlinear dy-

namics of a single vortex moving in random pinning poten-

tials under rf magnetic field. The power dissipated by an
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Figure 5: Mean free path dependencies of �� (��) calculated at

�/�0 = 10, �� = 1.67�−3
0

, �0 = 0.004, � = 0.01 and � = 0.1,

(a) �0 = 2, ��0 = 0.04 (b) �0 = 10, ��0 = 1.

oscillating vortex segment was calculated considering the

line tension of the vortex, Bardeen-Stephen viscous drag

force, and random pinning force with constant mean pin

density at different rf fields amplitudes, mean free path,

pinning strength and frequency. At low frequencies �� (�)
gradually increases with the field at a small field, but as

the frequency increases �� (�) becomes field independent.

The field-dependent residual surface resistance decreases

significantly at the small field in dirty material but shows a

field-independent behavior at a higher field. We obtained

a bell-shaped dependence of the surface resistance on the

mean free path due to the interplay between the pinning and

viscous forces.
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