Paper | Title | Page |
---|---|---|
MOOFAV10 | Completion of FRIB Superconducting Linac and Phased Beam Commissioning | 197 |
|
||
Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. The Facility for Rare Isotope Beams (FRIB) is an ac-celerator-based facility funded by the US Department of Energy for nuclear physics research. FRIB is nearing the end of technical construction, with first user beams ex-pected in Summer 2022. Key features are the delivery of a variety of rare isotopes with a beam energy of ’ 200 MeV/u and a beam power of up to 400 kW. The facility is upgradable to 400 MeV/u and multi-user capability. The FRIB driver linac consists of 324 superconducting resonators and 69 superconducting solenoids in 46 cry-omodules. FRIB is the first linac to deploy a large number of HWRs (220) and the first heavy ion linac to operate at 2 K. We report on the completion of production and in-stallation of the FRIB cryomodules and phased beam commissioning results. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOOFAV10 | |
About • | Received ※ 12 August 2021 — Revised ※ 16 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 04 May 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPTEV010 | RF System Experience for FRIB Half Wave Resonators | 226 |
|
||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. The installation and commissioning of the FRIB superconducting linac adopts a phased strategy. In SRF’19 we reported the progress on the commissioning of the linear segment 1 (LS1) which contains mainly the quarter wave resonators (QWRs). In this paper, we will report the recent progress on the commissioning of the remainder of the linac, including linear segment 2 (LS2), folding segment 2 (FS2) and linear segment 3 (LS3), focusing on the RF system experience for the half wave resonators (HWRs). Compared to the QWRs, the HWRs have a different type of tuner, run at higher power levels and have additional components (for example, high voltage bias tee for multipacting suppression and spark detector). Topics such as nonlinear tuner control for the pneumatic tuners; auto turn on/off implementation; and early issues and failures will be discussed in more detail. |
||
![]() |
Poster MOPTEV010 [1.604 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOPTEV010 | |
About • | Received ※ 22 June 2021 — Revised ※ 22 August 2021 — Accepted ※ 16 November 2021 — Issue date ※ 22 November 2021 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPTEV002 | Enhanced Pneumatic Tuner Control for FRIB Half-Wave Resonators | 829 |
|
||
The superconducting driver linac for the Facility for Rare Isotope Beams (FRIB) includes a total of 46 cryomodules; 31 cryomodules contain half-wave resonators (HWRs) with pneumatic tuners. Pneumatic tuner control is via solenoid valves connecting the tuner to a helium gas supply manifold and a gas return line. For precise compensation of cavity detuning over a small range, the control voltage for the solenoid valves must be calibrated. Some valves have hysteresis in the gas flow rate as a function of control voltage, such that their response may be nonlinear and not repeatable–this makes the control algorithm challenging. To improve the system performance, a new pneumatic tuner control system was developed which regulates the position of one stepper motor instead of the two solenoid valves. | ||
![]() |
Poster THPTEV002 [1.325 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-THPTEV002 | |
About • | Received ※ 24 June 2021 — Revised ※ 15 December 2021 — Accepted ※ 17 February 2022 — Issue date ※ 16 May 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |