Paper | Title | Page |
---|---|---|
TUPFAV006 | The Superconducting Radio Frequency System of Shenzhen Industrial Synchrotron Radiation Source FacilityRIAL SYNCHROTRON RADIATION SOURCE FACILITY | 392 |
|
||
Shenzhen industrial synchrotron radiation source is a 3 GeV synchrotron radiation diffraction-limited source. It consists of three parts, linear accelerator, booster, and storage ring. As a basic part of the storage ring, the superconducting radio frequency system provides energy for the beam to supplement the beam power loss caused by synchrotron radiation and higher-order modes, and provide the longitudinal bunch for the electron beam. The superconducting radio frequency cavity of the storage ring consists of two 500 MHz single-cell cavities and a third harmonic 1500 MHz double-cell cavity. This paper will introduce the superconducting cavity, radio frequency amplifier, and low-level radio frequency system in the Shenzhen industrial synchrotron radiation source facility. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPFAV006 | |
About • | Received ※ 20 June 2021 — Revised ※ 16 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 26 November 2021 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPCAV004 | Deflecting Cavities for Proton Beam Spreader in CiADS Project | 445 |
|
||
Funding: Large Research Infrastructures "China initiative Accelerator Driven System’(Grant No.2017-000052-75-01-000590 ) and National Natural Science Foundation of China (Grant NO. 11805249) Chinese initiative Accelerator Driven Subcritical System (CiADS) is supposed to accelerate continuous 162.5 MHz, 10 mA (or higher) proton beam to 500 MeV (or higher energy) with a superconducting driver linac. More application scenarios based on this high power intensity proton linac are now under considerations. Beam spreader system based on deflecting cavities for multiple users simultaneous operation are discussed in this paper, as well as the RF structure options for the equal eight- and nigh- beam-line split schemes. #huangyulu@impcas.ac.cn |
||
![]() |
Poster TUPCAV004 [1.078 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-TUPCAV004 | |
About • | Received ※ 21 June 2021 — Revised ※ 16 August 2021 — Accepted ※ 23 August 2021 — Issue date ※ 13 May 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |