Paper | Title | Page |
---|---|---|
SUPCAV018 | First N-Doping and Mid-T Baking of Medium-ß 644 MHz 5-Cell Elliptical Superconducting RF Cavities for Michigan State University’s Facility for Rare Isotope Beams | 53 |
|
||
Funding: Work supported by the 2020 US DoE, Office of Science Graduate Student Research award (SCGSR), and US DoE, Office of Science, High Energy Physics under Cooperative Agreement award number DE-SC0018362 Two hadron linacs currently under development in the US, the PIP-II linac at Fermi National Accelerator Laboratory (FNAL) and the upgrade for Michigan State University’s Facility For Rare Isotope Beams (FRIB), will employ 650 and 644 MHz ß-0.6 elliptical superconducting cavities respectively to meet their design energy requirements. The desired CW operation modes of these two linacs sets Q-factor requirements well above any previously achieved for cavities at this operating frequency and velocity, driving the need to explore new high-Q treatments. The N-doping technique developed at FNAL and employed at an industrial scale to the LCLS-II cryomodules is a strong candidate for high-Q treatments, but work is needed to refine the treatment to the lower operating frequency and velocity regime. We present the first results of the first N-doping tests and a "mid-T" bake test in the FRIB 644 MHz 5-cell elliptical cavities. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-SUPCAV018 | |
About • | Received ※ 23 June 2021 — Revised ※ 16 November 2021 — Accepted ※ 08 May 2022 — Issue date ※ 08 May 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOOFAV10 | Completion of FRIB Superconducting Linac and Phased Beam Commissioning | 197 |
|
||
Funding: This work is supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. The Facility for Rare Isotope Beams (FRIB) is an ac-celerator-based facility funded by the US Department of Energy for nuclear physics research. FRIB is nearing the end of technical construction, with first user beams ex-pected in Summer 2022. Key features are the delivery of a variety of rare isotopes with a beam energy of ’ 200 MeV/u and a beam power of up to 400 kW. The facility is upgradable to 400 MeV/u and multi-user capability. The FRIB driver linac consists of 324 superconducting resonators and 69 superconducting solenoids in 46 cry-omodules. FRIB is the first linac to deploy a large number of HWRs (220) and the first heavy ion linac to operate at 2 K. We report on the completion of production and in-stallation of the FRIB cryomodules and phased beam commissioning results. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2021-MOOFAV10 | |
About • | Received ※ 12 August 2021 — Revised ※ 16 August 2021 — Accepted ※ 21 August 2021 — Issue date ※ 04 May 2022 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |